scholarly journals Three-dimensional micro/nano-scale structure fabricated by combination of non-volatile polymerizable RTIL and FIB irradiation

2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Susumu Kuwabata ◽  
Hiro Minamimoto ◽  
Kosuke Inoue ◽  
Akihito Imanishi ◽  
Ken Hosoya ◽  
...  
2019 ◽  
Vol 630 ◽  
pp. A151 ◽  
Author(s):  
Natalia Porqueres ◽  
Jens Jasche ◽  
Guilhem Lavaux ◽  
Torsten Enßlin

One of the major science goals over the coming decade is to test fundamental physics with probes of the cosmic large-scale structure out to high redshift. Here we present a fully Bayesian approach to infer the three-dimensional cosmic matter distribution and its dynamics at z >  2 from observations of the Lyman-α forest. We demonstrate that the method recovers the unbiased mass distribution and the correct matter power spectrum at all scales. Our method infers the three-dimensional density field from a set of one-dimensional spectra, interpolating the information between the lines of sight. We show that our algorithm provides unbiased mass profiles of clusters, becoming an alternative for estimating cluster masses complementary to weak lensing or X-ray observations. The algorithm employs a Hamiltonian Monte Carlo method to generate realizations of initial and evolved density fields and the three-dimensional large-scale flow, revealing the cosmic dynamics at high redshift. The method correctly handles multi-modal parameter distributions, which allow constraining the physics of the intergalactic medium with high accuracy. We performed several tests using realistic simulated quasar spectra to test and validate our method. Our results show that detailed and physically plausible inference of three-dimensional large-scale structures at high redshift has become feasible.


CrystEngComm ◽  
2016 ◽  
Vol 18 (39) ◽  
pp. 7501-7505 ◽  
Author(s):  
Sky Shumao Xie ◽  
Oleg Vasylkiv ◽  
Alfred I. Y. Tok

2008 ◽  
Vol 612 ◽  
pp. 153-200 ◽  
Author(s):  
ROBERTO CAMASSA ◽  
TERRY JO LEITERMAN ◽  
RICHARD M. MCLAUGHLIN

An exact mathematical solution for the low-Reynolds-number quasi-steady hydrodynamic motion induced by a rod in the form of a prolate spheroid sweeping a symmetric double cone is developed, and the influence of the ensuing fluid motion upon passive particles is studied. The resulting fluid motion is fully three-dimensional and time varying. The advected particles are observed to admit slow orbits around the rotating rods and a fast epicyclic motion roughly commensurate with the rod rotation rate. The epicycle amplitudes, vertical fluctuations, arclengths and angle travelled per rotation are mapped as functions of their initial coordinates and rod geometry. These trajectories exhibit a rich spatial structure with greatly varying trajectory properties. Laboratory frame asymmetries of these properties are explored using integer time Poincaré sections and far-field asymptotic analysis. This includes finding a small cone angle invariant in the limit of large spherical radius whereas an invariant for arbitrary cone angles is obtained in the limit of large cylindrical radius. The Eulerian and Lagrangian flow properties of the fluid flow are studied and shown to exhibit complex structures in both space and time. In particular, spatial regions of high speed and Lagrangian velocities possessing multiple extrema per rod rotation are observed. We establish the origin of these complexities via an auxiliary flow in a rotating frame, which provides a generator that defines the epicycles. Finally, an additional spin around the major spheroidal axis is included in the exact hydrodynamic solution resulting in enhanced vertical spatial fluctuation as compared to the spinless counterpart. The connection and relevance of these observations with recent developments in nano-scale fluidics is discussed, where similar epicycle behaviour has been observed. The present study is of direct use to nano-scale actuated fluidics.


1979 ◽  
Vol 90 (1) ◽  
pp. 129-143 ◽  
Author(s):  
Steven A. Orszag ◽  
Cha-Mei Tang

The formation of singularities in two-dimensional magnetohydrodynamic flow is investigated by direct numerical simulation. It is shown that two-dimensional magnetohydrodynamic turbulence is not as singular as three-dimensional hydrodynamic turbulence (in the sense that it has a less highly excited small-scale structure) but that it is more singular than two-dimensional hydrodynamic turbulence.


Sign in / Sign up

Export Citation Format

Share Document