scholarly journals Mid-infrared fluorescence, energy transfer process and rate equation analysis in Er3+ doped germanate glass

2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Tao Wei ◽  
Ying Tian ◽  
Fangze Chen ◽  
Muzhi Cai ◽  
Junjie Zhang ◽  
...  
Author(s):  
Yoshiyuki Honda ◽  
Shinji Motokoshi ◽  
Takahisa Jitsuno ◽  
Kana Fujioka ◽  
Toshihiro Yamada ◽  
...  

Abstract The concentration dependence of energy transfer from Cr3+ to Nd3+ at the 4T1 level excitation in Nd/Cr:YAG was investigated by the fluorescence decay curves of Cr3+ and Nd3+ for Nd/Cr:YAG and Cr:YAG ceramic powders in the Cr3+ concentration range of 0.1 to 6.0 mol%. The energy transfer process between Cr3+ and Nd3+ at the 4T1 level excitation is tried to explain using a rate equation that assumes energy transfer from the 2E–4T2 level to Nd3+ on the basis of dipole–dipole interactions, the same as the 4T2 level excitation. In conclusion, the energy excited to the 4T1 level will relax non-radiatively to the 2E–4T2 level and then transfer to Nd3+. It is presumed there will be no direct transfer from the 4T1 level to Nd3+. Our rate equations will be useful when simultaneously exciting the 4T1 and 4T2 levels of Cr3+ in Nd/Cr:YAG using broadband pumping sources.


2015 ◽  
Vol 10 (2) ◽  
pp. 2692-2695
Author(s):  
Bhekuzulu Khumalo

Heat has often been described as part of the energy transfer process. Information theory says everything is information. If everything is information then what type of information is heat, this question can be settled by the double slit experiment, but we must know what we are looking for. 


Sign in / Sign up

Export Citation Format

Share Document