scholarly journals Tipping points and early warning signals in the genomic composition of populations induced by environmental changes

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Jacobo Aguirre ◽  
Susanna Manrubia

2020 ◽  
Vol 17 (170) ◽  
pp. 20200482
Author(s):  
T. M. Bury ◽  
C. T. Bauch ◽  
M. Anand

Theory and observation tell us that many complex systems exhibit tipping points—thresholds involving an abrupt and irreversible transition to a contrasting dynamical regime. Such events are commonly referred to as critical transitions. Current research seeks to develop early warning signals (EWS) of critical transitions that could help prevent undesirable events such as ecosystem collapse. However, conventional EWS do not indicate the type of transition, since they are based on the generic phenomena of critical slowing down. For instance, they may fail to distinguish the onset of oscillations (e.g. Hopf bifurcation) from a transition to a distant attractor (e.g. Fold bifurcation). Moreover, conventional EWS are less reliable in systems with density-dependent noise. Other EWS based on the power spectrum (spectral EWS) have been proposed, but they rely upon spectral reddening, which does not occur prior to critical transitions with an oscillatory component. Here, we use Ornstein–Uhlenbeck theory to derive analytic approximations for EWS prior to each type of local bifurcation, thereby creating new spectral EWS that provide greater sensitivity to transition proximity; higher robustness to density-dependent noise and bifurcation type; and clues to the type of approaching transition. We demonstrate the advantage of applying these spectral EWS in concert with conventional EWS using a population model, and show that they provide a characteristic signal prior to two different Hopf bifurcations in data from a predator–prey chemostat experiment. The ability to better infer and differentiate the nature of upcoming transitions in complex systems will help humanity manage critical transitions in the Anthropocene Era.



2016 ◽  
Vol 7 (2) ◽  
pp. 313-326 ◽  
Author(s):  
Mark S. Williamson ◽  
Sebastian Bathiany ◽  
Timothy M. Lenton

Abstract. The prospect of finding generic early warning signals of an approaching tipping point in a complex system has generated much interest recently. Existing methods are predicated on a separation of timescales between the system studied and its forcing. However, many systems, including several candidate tipping elements in the climate system, are forced periodically at a timescale comparable to their internal dynamics. Here we use alternative early warning signals of tipping points due to local bifurcations in systems subjected to periodic forcing whose timescale is similar to the period of the forcing. These systems are not in, or close to, a fixed point. Instead their steady state is described by a periodic attractor. For these systems, phase lag and amplification of the system response can provide early warning signals, based on a linear dynamics approximation. Furthermore, the Fourier spectrum of the system's time series reveals harmonics of the forcing period in the system response whose amplitude is related to how nonlinear the system's response is becoming with nonlinear effects becoming more prominent closer to a bifurcation. We apply these indicators as well as a return map analysis to a simple conceptual system and satellite observations of Arctic sea ice area, the latter conjectured to have a bifurcation type tipping point. We find no detectable signal of the Arctic sea ice approaching a local bifurcation.



2021 ◽  
Author(s):  
Thomas Bury ◽  
Raman Sujith ◽  
Induja Pavithran ◽  
Marten Scheffer ◽  
Timothy Lenton ◽  
...  

Many natural systems exhibit regime shifts where slowly changing environmental conditions suddenly shift the system to a new and sometimes very different state. As the tipping point is approached, the dynamics of complex and varied systems all simplify down to a small number of possible 'normal forms' that determine how the new regime will look. Indicators such as increasing lag-1 autocorrelation and variance provide generic early warning signals (EWS) by detecting how dynamics slow down near the tipping point. But they do not indicate what type of new regime will emerge. Here we develop a deep learning algorithm that can detect EWS in systems it was not explicitly trained on, by exploiting information about normal forms and scaling behaviour of dynamics near tipping points that are common to many dynamical systems. The algorithm detects EWS in 268 empirical and model time series from ecology, thermoacoustics, climatology, and epidemiology with much greater sensitivity and specificity than generic EWS. It can also predict the normal form that will characterize the oncoming regime shift. Such approaches can help humans better manage regime shifts. The algorithm also illustrates how a universe of possible models can be mined to recognize naturally-occurring tipping points.



2015 ◽  
Vol 6 (2) ◽  
pp. 2243-2272 ◽  
Author(s):  
M. S. Williamson ◽  
S. Bathiany ◽  
T. M. Lenton

Abstract. The prospect of finding generic early warning signals of an approaching tipping point in a complex system has generated much recent interest. Existing methods are predicated on a separation of timescales between the system studied and its forcing. However, many systems, including several candidate tipping elements in the climate system, are forced periodically at a timescale comparable to their internal dynamics. Here we find alternative early warning signals of tipping points due to local bifurcations in systems subjected to periodic forcing whose time scale is similar to the period of the forcing. These systems are not in, or close to, a fixed point. Instead their steady state is described by a periodic attractor. We show that the phase lag and amplification of the system response provide early warning signals, based on a linear dynamics approximation. Furthermore, the power spectrum of the system's time series reveals the generation of harmonics of the forcing period, the size of which are proportional to how nonlinear the system's response is becoming with nonlinear effects becoming more prominent closer to a bifurcation. We apply these indicators to a simple conceptual system and satellite observations of Arctic sea ice area, the latter conjectured to have a bifurcation type tipping point. We find no detectable signal of the Arctic sea ice approaching a local bifurcation.





2021 ◽  
Vol 118 (39) ◽  
pp. e2106140118 ◽  
Author(s):  
Thomas M. Bury ◽  
R. I. Sujith ◽  
Induja Pavithran ◽  
Marten Scheffer ◽  
Timothy M. Lenton ◽  
...  

Many natural systems exhibit tipping points where slowly changing environmental conditions spark a sudden shift to a new and sometimes very different state. As the tipping point is approached, the dynamics of complex and varied systems simplify down to a limited number of possible “normal forms” that determine qualitative aspects of the new state that lies beyond the tipping point, such as whether it will oscillate or be stable. In several of those forms, indicators like increasing lag-1 autocorrelation and variance provide generic early warning signals (EWS) of the tipping point by detecting how dynamics slow down near the transition. But they do not predict the nature of the new state. Here we develop a deep learning algorithm that provides EWS in systems it was not explicitly trained on, by exploiting information about normal forms and scaling behavior of dynamics near tipping points that are common to many dynamical systems. The algorithm provides EWS in 268 empirical and model time series from ecology, thermoacoustics, climatology, and epidemiology with much greater sensitivity and specificity than generic EWS. It can also predict the normal form that characterizes the oncoming tipping point, thus providing qualitative information on certain aspects of the new state. Such approaches can help humans better prepare for, or avoid, undesirable state transitions. The algorithm also illustrates how a universe of possible models can be mined to recognize naturally occurring tipping points.



2021 ◽  
Vol 47 ◽  
pp. 100944
Author(s):  
Julio Alberto Alegre Stelzer ◽  
Jorrit Padric Mesman ◽  
Rita Adrian ◽  
Bastiaan Willem Ibelings


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoram K. Kunkels ◽  
Harriëtte Riese ◽  
Stefan E. Knapen ◽  
Rixt F. Riemersma - van der Lek ◽  
Sandip V. George ◽  
...  

AbstractEarly-warning signals (EWS) have been successfully employed to predict transitions in research fields such as biology, ecology, and psychiatry. The predictive properties of EWS might aid in foreseeing transitions in mood episodes (i.e. recurrent episodes of mania and depression) in bipolar disorder (BD) patients. We analyzed actigraphy data assessed during normal daily life to investigate the feasibility of using EWS to predict mood transitions in bipolar patients. Actigraphy data of 15 patients diagnosed with BD Type I collected continuously for 180 days were used. Our final sample included eight patients that experienced a mood episode, three manic episodes and five depressed episodes. Actigraphy data derived generic EWS (variance and kurtosis) and context-driven EWS (autocorrelation at lag-720) were used to determine if these were associated to upcoming bipolar episodes. Spectral analysis was used to predict changes in the periodicity of the sleep/wake cycle. The study procedures were pre-registered. Results indicated that in seven out of eight patients at least one of the EWS did show a significant change-up till four weeks before episode onset. For the generic EWS the direction of change was always in the expected direction, whereas for the context-driven EWS the observed effect was often in the direction opposite of what was expected. The actigraphy data derived EWS and spectral analysis showed promise for the prediction of upcoming transitions in mood episodes in bipolar patients. Further studies into false positive rates are suggested to improve effectiveness for EWS to identify upcoming bipolar episode onsets.



2015 ◽  
Vol 47 (43) ◽  
pp. 4630-4652 ◽  
Author(s):  
Chia-Chien Chang ◽  
Te-Chung Hu ◽  
Chiu-Fen Kao ◽  
Ya-Chi Chang


Sign in / Sign up

Export Citation Format

Share Document