fold bifurcation
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 24)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Leonardo Rydin Gorjão ◽  
Keno Riechers ◽  
Forough Hassanibesheli ◽  
Dirk Witthaut ◽  
Pedro G. Lind ◽  
...  

Abstract. Dansgaard–Oeschger (DO) events are sudden climatic shifts from cold to substantially milder conditions in the arctic region that occurred during previous glacial intervals. They can be most clearly identified in paleoclimate records of δ18O and dust concentrations from Greenland ice cores, which serve as proxies for temperature and atmospheric circulation patterns, respectively. The existence of stadial (cold) and interstadial (milder) phases is typically attributed to a bistability of the North Atlantic climate system allowing for rapid transitions from the first to the latter and a more gentle yet still fairly abrupt reverse shift from the latter to the first. However, the underlying physical mechanisms causing these transitions remain debated. Here, we conduct a data-driven analysis of the Greenland temperature and atmospheric circulation proxies under the purview of stochastic processes. Based on the Kramers–Moyal equation we present a one-dimensional and two-dimensional derivation of the proxies' drift and diffusion terms, which unravels the features of the climate system's stability landscape. Our results show that: (1) in contrast to common assumptions, the δ18O proxy results from a monostable process, and transitions occur in the record only due to the coupling to other variables; (2) conditioned on δ18O the dust concentrations exhibit both mono and bistable states, transitioning between them via a double-fold bifurcation; (3) the δ18O record is discontinuous in nature, and mathematically requires an interpretation beyond the classical Langevin equation. These findings can help understand candidate mechanisms underlying these archetypal examples of abrupt climate changes.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3004
Author(s):  
Danjin Zhang ◽  
Youhua Qian

In this paper, the dynamic behavior of the van der Pol-Rayleigh system is studied by using the fast–slow analysis method and the transformation phase portrait method. Firstly, the stability and bifurcation behavior of the equilibrium point of the system are analyzed. We find that the system has no fold bifurcation, but has Hopf bifurcation. By calculating the first Lyapunov coefficient, the bifurcation direction and stability of the Hopf bifurcation are obtained. Moreover, the bifurcation diagram of the system with respect to the external excitation is drawn. Then, the fast subsystem is simulated numerically and analyzed with or without external excitation. Finally, the vibration behavior and its generation mechanism of the system in different modes are analyzed. The vibration mode of the system is affected by both the fast and slow varying processes. The mechanisms of different modes of vibration of the system are revealed by the transformation phase portrait method, because the system trajectory will encounter different types of attractors in the fast subsystem.


Author(s):  
Amira Amamou

Floating ring bearings have been widely used, over the last decades, in rotors of automotive turbochargers because of their improved damping behavior and their good emergency-operating capabilities. They also offer a cost-effective design and have good assembly properties. Nevertheless, rotors with floating ring bearings show vibration effects of nonlinear nature induced by self-excited oscillations originating from the bearing oil films (oil whirl/whip phenomena) and may exhibit various nonlinear vibration effects which may cause damage to the rotor. In order to investigate these dynamic phenomena, this paper has developed a nonlinear model of a perfectly balanced rigid rotor supported by two identical floating ring bearings with consideration of their vibration behavior mainly governed by fluid dynamics. The dimensionless hydrodynamic forces of floating ring bearings have been derived based on the short bearing theory and the half Sommerfeld solution. Using the numerical continuation approach, different bifurcations are detected when a control parameter, the journal speed, is varied. Depending on the system’s physical parameters, the rotor can show stable or unstable limit cycles which themselves may collapse beyond a certain rotor speed to exhibit a fold bifurcation. Bifurcation analysis is performed to investigate the occurring instabilities and nonlinear phenomena. Such results explain the instabilities characteristics of the floating ring bearing in high-speed applications. It has also been found that the selection of the bearing modulus plays an important role in the characterization of the rotor stability threshold speed and bifurcation sequences. An understanding of the system’s nonlinear behavior serves as the basis for new and rational criteria for the design and the safe operation of rotating machines.


2021 ◽  
Vol 11 (20) ◽  
pp. 9486
Author(s):  
Andrea Arena

The nonlinear dynamic features of compression roller batteries were investigated together with their nonlinear response to primary resonance excitation and to internal interactions between modes. Starting from a parametric nonlinear model based on a previously developed Lagrangian formulation, asymptotic treatment of the equations of motion was first performed to characterize the nonlinearity of the lowest nonlinear normal modes of the system. They were found to be characterized by a softening nonlinearity associated with the stiffness terms. Subsequently, a direct time integration of the equations of motion was performed to compute the frequency response curves (FRCs) when the system is subjected to direct harmonic excitations causing the primary resonance of the lowest skew-symmetric mode shape. The method of multiple scales was then employed to study the bifurcation behavior and deliver closed-form expressions of the FRCs and of the loci of the fold bifurcation points, which provide the stability regions of the system. Furthermore, conditions for the onset of internal resonances between the lowest roller battery modes were found, and a 2:1 resonance between the third and first modes of the system was investigated in the case of harmonic excitation having a frequency close to the first mode and the third mode, respectively.


Author(s):  
Lukas Woiwode ◽  
Alexander F. Vakakis ◽  
Malte Krack

AbstractIt is widely known that dry friction damping can bound the self-excited vibrations induced by negative damping. The vibrations typically take the form of (periodic) limit cycle oscillations. However, when the intensity of the self-excitation reaches a condition of maximum friction damping, the limit cycle loses stability via a fold bifurcation. The behavior may become even more complicated in the presence of any internal resonance conditions. In this work, we consider a two-degree-of-freedom system with an elastic dry friction element (Jenkins element) having closely spaced natural frequencies. The symmetric in-phase motion is subjected to self-excitation by negative (viscous) damping, while the symmetric out-of-phase motion is positively damped. In a previous work, we showed that the limit cycle loses stability via a secondary Hopf bifurcation, giving rise to quasi-periodic oscillations. A further increase in the self-excitation intensity may lead to chaos and finally divergence, long before reaching the fold bifurcation point of the limit cycle. In this work, we use the method of complexification-averaging to obtain the slow flow in the neighborhood of the limit cycle. This way, we show that chaos is reached via a cascade of period-doubling bifurcations on invariant tori. Using perturbation calculus, we establish analytical conditions for the emergence of the secondary Hopf bifurcation and approximate analytically its location. In particular, we show that non-periodic oscillations are the typical case for prominent nonlinearity, mild coupling (controlling the proximity of the modes), and sufficiently light damping. The range of validity of the analytical results presented herein is thoroughly assessed numerically. To the authors’ knowledge, this is the first work that shows how the challenging Jenkins element can be treated formally within a consistent perturbation approach in order to derive closed-form analytical results for limit cycles and their bifurcations.


Author(s):  
Qingzhen Han ◽  
Shiqin Niu ◽  
Lei He

The influence of the electromagnetic parameters on the torsional dynamics of the electric vehicle powertrain is studied by considering the electromechanical coupling effect. By adding the electromagnetic torque on the drive side, the powertrain is simplified as nonlinear drive-shaft model. The number, stability, and bifurcation conditions of the equilibrium points of the nonlinear drive-shaft model are deduced. Based on the averaged equations and the amplitude-frequency response equation, the stability and bifurcation conditions, such as fold bifurcation and Hopf bifurcation, of the resonance curve are discussed. The influence of electromagnetic parameters on the torsional dynamics is studied by simulation. It is shown that with the change of the parameters, the number as well as the stability of the equilibrium points may be changed which is affected by fold bifurcation. It is also shown that the resonance curve may lose its stability when fold bifurcation happens. By limiting the parameters in the region without fold bifurcation, the unstable dynamics of the resonance curve can be controlled.


2021 ◽  
Vol 31 (11) ◽  
pp. 2130033
Author(s):  
J. Leonel Rocha ◽  
Abdel-Kaddous Taha

This paper aims to study the nonlinear dynamics and bifurcation structures of a new mathematical model of the [Formula: see text]-Ricker population model with a Holling type II per-capita birth function, where the Allee effect parameter is [Formula: see text]. A generalized [Formula: see text]-Lambert function is defined on the 3D parameters space to determine the existence and variation of the number of nonzero fixed points of the homographic [Formula: see text]-Ricker maps considered. The singularity points of the generalized [Formula: see text]-Lambert function are identified with the cusp points on a fold bifurcation of the homographic [Formula: see text]-Ricker maps. In this approach, the application of the transcendental generalized [Formula: see text]-Lambert function is demonstrated based on the analysis of local and global bifurcation structures of this three-parameter family of homographic maps. Some numerical studies are included to illustrate the theoretical results.


2021 ◽  
Author(s):  
Huijun Xu ◽  
Zhengdi Zhang ◽  
Miao Peng

Abstract The aim of this paper is to investigate the influence of the coupling of two scales on the dynamics of a piecewise smooth dynamical system. A relatively simple model with two switching boundaries is taken as an example by introducing a nonlinear piecewise resistor and a harmonically changed electric source into a typical Chua’s circuit. Taking suitable values of the parameters, four different types of bursting oscillations are observed corresponding to different values of the exciting amplitude. Regarding the periodic excitation as a slow-varying parameter, equilibrium branches of the fast subsystem as well as the related bifurcations, such as fold bifurcation, Hopf bifurcation, period doubling bifurcation, nonsmooth Hopf bifurcation and nonsmooth fold limit cycle bifurcation, are explored with theoretical and numerical methods. With the help of the overlap of the transformed phase portrait and the equilibrium branches, the mechanism of the bursting oscillations can be analyzed in detail. It is found that for relatively small exciting amplitude, since the trajectory is governed by a smooth subsystem, only conventional bifurcations take place, leading to the transitions between the spiking states and quiescent states. However, with an increase of the exciting amplitude so that the trajectory passes across the switching boundaries, nonsmooth bifurcations occurring at the boundaries may involve the structures of attractors, leading to complicated bursting oscillations. Further increasing the exciting amplitude, the number of the spiking states decreases although more bifurcations take place, which can be explained by the delay effect of bifurcation


Author(s):  
Davood Momeni ◽  
Phongpichit Channuie

In this paper, we investigate a feasible holography with the Kitaev model using dilatonic gravity in AdS2. We propose a generic dual theory of gravity in the AdS2 and suggest that this bulk action is a suitable toy model in studying quantum mechanics in Kitaev model using gauge/gravity duality. This gives a possible equivalent description for the Kitaev model in the dual gravity bulk. Scalar and tensor perturbations are investigated in details. In the case of near AdS perturbation, we show that the geometry still “freezes” as is AdS, while the dilation perturbation decays at the AdS boundary safely. The time-dependent part of the perturbation is an oscillatory model. We discover that the dual gravity induces an effective and renormalizable quantum action. The entanglement entropy for bulk theory is computed using extremal surfaces. We prove that these surfaces have a fold bifurcation regime of criticality.


2021 ◽  
Author(s):  
Lukas Woiwode ◽  
Alexander F. Vakakis ◽  
Malte Krack

Abstract It is widely known that dry friction damping can bound the self-excited vibrations induced by negative damping. The vibrations typically take the form of (periodic) limit cycle oscillations. However, when the intensity of the self-excitation reaches a condition of maximum friction damping, the limit cycle loses stability via a fold bifurcation. The behavior may become even more complicated in the presence of any internal resonance conditions. In this work, we consider a two-degree-of-freedom system with an elastic dry friction element (Jenkins element) having closely spaced natural frequencies. The symmetric in-phase motion is subjected to self-excitation by negative (viscous) damping, while the symmetric out-of-phase motion is positively damped. In a previous work, we showed that the limit cycle loses stability via a secondary Hopf bifurcation, giving rise to quasi-periodic oscillations. A further increase of the self-excitation intensity may lead to chaos and finally divergence, long before reaching the fold bifurcation point of the limit cycle. In this work, we use the method of Complexification-Averaging to obtain the slow flow in the neighborhood of the limit cycle. This way, we show that chaos is reached via a cascade of period doubling bifurcations on invariant tori. Using perturbation calculus, we establish analytical conditions for the emergence of the secondary Hopf bifurcation and approximate analytically its location. In particular, we show that non-periodic oscillations are the typical case for prominent nonlinearity, mild coupling (controlling the proximity of the modes) and sufficiently light damping. The range of validity of the analytical results presented herein is thoroughly assessed numerically. To the authors' knowledge, this is the first work that shows how the challenging Jenkins element can be treated formally within a consistent perturbation approach in order to derive closed-form analytical results for limit cycles and their bifurcations.


Sign in / Sign up

Export Citation Format

Share Document