canonical wnt signaling
Recently Published Documents


TOTAL DOCUMENTS

836
(FIVE YEARS 160)

H-INDEX

79
(FIVE YEARS 6)

2022 ◽  
Vol 16 ◽  
pp. 101326
Author(s):  
Haissa O. Brito ◽  
José de Ribamar Rodrigues Calixto ◽  
Rui Medeiros ◽  
Rui M. Gil da Costa

2022 ◽  
Author(s):  
Nydia Tejeda-Munoz ◽  
Marco Morselli ◽  
Yuki Moriyama ◽  
Pooja Sheladiya ◽  
Matteo Pellegrini ◽  
...  

During canonical Wnt signaling, the Lrp6 and Frizzled co-receptors bind to the Wnt growth factor and the complex is endocytosed and sequestered together with Glycogen Synthase Kinase 3 (GSK3), Dishevelled (Dvl), and Axin inside the intraluminal vesicles of late endosomes, known as multivesicular bodies (MVBs). Here we present experiments showing that Wnt causes the endocytosis of focal adhesion (FA) proteins and depletion of Integrin β 1 (ITGβ1) from the cell surface. FAs and integrins link the cytoskeleton to the extracellular matrix. Wnt-induced endocytosis caused ITGβ1 depletion from the plasma membrane and was accompanied by striking changes in the actin cytoskeleton. In situ protease protection assays in cultured cells showed that ITGβ1 was sequestered within membrane-bounded organelles that corresponded to Wnt-induced MVBs containing GSK3 and FA-associated proteins. An in vivo model using Xenopus embryos dorsalized by Wnt8 mRNA showed that ITGβ1 depletion decreased Wnt signaling. The finding of a crosstalk between two mayor signaling pathways, canonical Wnt and focal adhesions, should be relevant to human cancer and cell biology.


2022 ◽  
Vol 15 (1) ◽  
pp. 101267
Author(s):  
Isabelle Ariane Bley ◽  
Anabel Zwick ◽  
Muriel Charlotte Hans ◽  
Katrin Thieser ◽  
Viktoria Wagner ◽  
...  

Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 80
Author(s):  
Yentl Huybrechts ◽  
Eveline Boudin ◽  
Gretl Hendrickx ◽  
Ellen Steenackers ◽  
Neveen Hamdy ◽  
...  

Sclerosteosis is a high bone mass disorder, caused by pathogenic variants in the genes encoding sclerostin or LRP4. Both proteins form a complex that strongly inhibits canonical WNT signaling activity, a pathway of major importance in bone formation. So far, all reported disease-causing variants are located in the third β-propeller domain of LRP4, which is essential for the interaction with sclerostin. Here, we report the identification of two compound heterozygous variants, a known p.Arg1170Gln and a novel p.Arg632His variant, in a patient with a sclerosteosis phenotype. Interestingly, the novel variant is located in the first β-propeller domain, which is known to be indispensable for the interaction with agrin. However, using luciferase reporter assays, we demonstrated that both the p.Arg1170Gln and the p.Arg632His variant in LRP4 reduced the inhibitory capacity of sclerostin on canonical WNT signaling activity. In conclusion, this study is the first to demonstrate that a pathogenic variant in the first β-propeller domain of LRP4 can contribute to the development of sclerosteosis, which broadens the mutational spectrum of the disorder.


2021 ◽  
Author(s):  
Zixiong Huang ◽  
Yiqing Du ◽  
Huaqi Yin ◽  
Gongwei Wang ◽  
Tao Xu

Abstract Introduction & Objectives: Canonical Wnt signaling (Wnt/β-catenin signaling) maintains the bone homeostasis by promoting the osteoblastic activities. The inhibitory factor, Dickkopf (DKK)1, enhances the bone resorption, especially in malignancies. The low density lipoprotein related protein (LRP) 5 is a component of membranous co-receptor of Wnt/β-catenin signaling and is also involved in serum low density lipoprotein cholestrol (LDL-C) level regulation. The clear cell renal cell carcinoma bone metastasis (ccRCC-BM) is characterized by osteolytic bone resorption. Whether and how Wnt/β-catenin signaling plays roles in regulating the invasion, metastasis and osteolytic process of ccRCC to bone remain unclear. This study investigated the expression of DKK1, LRP5 proteins in primary and metastatic lesions of RCC-BM. The therapeutic potential of Wnt/β-catenin signaling target medication was also evaluated.Materials & Methods: ccRCC-BM patients with paired samples of primary and metastatic lesions were selected. ccRCC patients without any metastasis (ccRCC-only) were set as control. Slides of paraffin-embedded tissue underwent immunohistochemical staining with monoclonalanti-DKK1 antibody and polyclonal anti-LRP5 antibody. Semi-quantitatively scoring according to staining intensity was performed. The staining results in the renal tissue adjacent to RCC, the primary RCC lesions (with BM or without BM), and the RCC-BM lesions were recorded. The expression difference was analyzed by univariate analysis of variance (ANOVA).Results: The expression of DKK1 was significantly different amid renal tissue adjacent to RCC, primary RCC and RCC-BM tissues (p< 0.001). The expression of DKK1 in primary RCC was significantly lower than that in renal tissue adjacent to RCC (p<0.001). No difference was found between ccRCC-BM group and ccRCC-only group. DKK1 expression in bone metastasis was significantly higher than that in primary tumor (p < 0.001). The expression of LRP5 in the primary tumor of ccRCC-BM group was significantly lower than that of adjacent renal tissue (p<0.01). Tendency of decreasing expression was found between primary lesion of ccRCC-BM group and primary lesion of ccRCC-only group (p=0.073). In bone metastasis, the expression of LRP5 protein was not significantly different from that in adjacent renal tissue and RCC primary lesion.Conclusions: A "rebound" of DKK1 expression was found in bone metastasis lesions. Along with the decreasing LRP5 expression in primary lesions of RCC-BM patients, this suggests that the canonical Wnt signaling (Wnt/β-catenin signaling) is inhibited during the bone metastasis process in ccRCC. The overexpression of DKK1 and the down-regulation of LRP5 receptor are involved.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Daniel Jun-Kit Hu ◽  
Jina Yun ◽  
Justin Elstrott ◽  
Heinrich Jasper

AbstractTissue regeneration after injury requires coordinated regulation of stem cell activation, division, and daughter cell differentiation, processes that are increasingly well understood in many regenerating tissues. How accurate stem cell positioning and localized integration of new cells into the damaged epithelium are achieved, however, remains unclear. Here, we show that enteroendocrine cells coordinate stem cell migration towards a wound in the Drosophila intestinal epithelium. In response to injury, enteroendocrine cells release the N-terminal domain of the PTK7 orthologue, Otk, which activates non-canonical Wnt signaling in intestinal stem cells, promoting actin-based protrusion formation and stem cell migration towards a wound. We find that this migratory behavior is closely linked to proliferation, and that it is required for efficient tissue repair during injury. Our findings highlight the role of non-canonical Wnt signaling in regeneration of the intestinal epithelium, and identify enteroendocrine cell-released ligands as critical coordinators of intestinal stem cell migration.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Mengting Liu ◽  
Jian Qin ◽  
Jing Cong ◽  
Yubin Yang

In our previous in vitro study, we found that chlorogenic acid (CGA) inhibited adipocyte differentiation and triglyceride (TG) accumulation, but the underlying mechanism is still unclear. Accumulative genetic evidence supports that canonical Wnt signaling is a key modulator on adipogenesis. Methods. In this study, 3T3-L1 cells were induced adipogenic differentiation and then treated with CGA. We investigate the effect of CGA in inhibiting adipogenesis and evaluate its role in modulating Wnt10b (wingless integration1 10b), β-catenin, glycogen synthase kinase-3β (GSK-3β), and peroxisome proliferator-activated receptor γ (PPAR-γ) involved in the Wnt (wingless integration1)/β-catenin signaling pathway. Results. The result showed that after CGA treatment, lipid accumulation and TG level decreased significantly in 3T3-L1 cells, indicating that CGA could inhibit adipogenesis. In addition, CGA repressed the induction of adipocyte differentiation biomarkers as PPAR-γ, adipocyte protein 2 (aP2), fatty acid synthase (FAS), and lipoprotein lipase (LPL), and the secretion of GSK-3β in a dose-dependent manner upregulated the expression of β-catenin and Wnt10b both in gene and protein levels. Moreover, CGA induced phosphorylation of GSK-3β and promoted the accumulation of free cytosolic β-catenin in 3T3-L1 adipocytes. Conclusion. Overall, these findings gave us the implications that CGA inhibits adipogenesis via the canonical Wnt signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document