scholarly journals Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Yu-Guang Yang ◽  
Peng Xu ◽  
Rui Yang ◽  
Yi-Hua Zhou ◽  
Wei-Min Shi
2015 ◽  
Vol 33 (13) ◽  
pp. 2855-2859 ◽  
Author(s):  
Anthony Martin ◽  
Bruno Sanguinetti ◽  
Charles Ci Wen Lim ◽  
Raphael Houlmann ◽  
Hugo Zbinden

2017 ◽  
Vol 28 (06) ◽  
pp. 1750078 ◽  
Author(s):  
Kamalika Bhattacharjee ◽  
Dipanjyoti Paul ◽  
Sukanta Das

This paper investigates the potentiality of pseudo-random number generation of a 3-neighborhood 3-state cellular automaton (CA) under periodic boundary condition. Theoretical and empirical tests are performed on the numbers, generated by the CA, to observe the quality of it as pseudo-random number generator (PRNG). We analyze the strength and weakness of the proposed PRNG and conclude that the selected CA is a good random number generator.


2021 ◽  
Vol 21 (3&4) ◽  
pp. 0181-0202
Author(s):  
Khodakhast Bibak ◽  
Robert Ritchie ◽  
Behrouz Zolfaghari

Quantum key distribution (QKD) offers a very strong property called everlasting security, which says if authentication is unbroken during the execution of QKD, the generated key remains information-theoretically secure indefinitely. For this purpose, we propose the use of certain universal hashing based MACs for use in QKD, which are fast, very efficient with key material, and are shown to be highly secure. Universal hash functions are ubiquitous in computer science with many applications ranging from quantum key distribution and information security to data structures and parallel computing. In QKD, they are used at least for authentication, error correction, and privacy amplification. Using results from Cohen [Duke Math. J., 1954], we also construct some new families of $\varepsilon$-almost-$\Delta$-universal hash function families which have much better collision bounds than the well-known Polynomial Hash. Then we propose a general method for converting any such family to an $\varepsilon$-almost-strongly universal hash function family, which makes them useful in a wide range of applications, including authentication in QKD.


Sign in / Sign up

Export Citation Format

Share Document