scholarly journals Semiconductor Electronic Label-Free Assay for Predictive Toxicology

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Yufei Mao ◽  
Kyeong-Sik Shin ◽  
Xiang Wang ◽  
Zhaoxia Ji ◽  
Huan Meng ◽  
...  
Author(s):  
Ashish Jagtiani ◽  
Jiang Zhe ◽  
Bi-min Zhang Newby

We describe an all-electronic, label-free, resistive pulse sensor that utilizes multiple micropores for simultaneous detection and counting of multiple biological particles. Four particle samples were utilized for the sensor testing: 20μm and 40μm polymethacrylate (PM) particles, Juniper pollen and Eastern Cottonwood pollen. Experiments demonstrated that this sensor was able to differentiate and count multiple particle solutions simultaneously through its four micropores fabricated on polymer membranes. Thus the sensing throughput has been improved significantly. Furthermore, the experimental results also proved the feasibility of differentiating various pollens from PM microparticles with the multi-pore resistive pulse sensor, with no need for labeling of samples.


2020 ◽  
Vol 39 (5) ◽  
pp. 397-421
Author(s):  
Charlene Andraos ◽  
Il Je Yu ◽  
Mary Gulumian

Despite several studies addressing nanoparticle (NP) interference with conventional toxicity assay systems, it appears that researchers still rely heavily on these assays, particularly for high-throughput screening (HTS) applications in order to generate “big” data for predictive toxicity approaches. Moreover, researchers often overlook investigating the different types of interference mechanisms as the type is evidently dependent on the type of assay system implemented. The approaches implemented in the literature appear to be not adequate as it often addresses only one type of interference mechanism with the exclusion of others. For example, interference of NPs that have entered cells would require intracellular assessment of their interference with fluorescent dyes, which has so far been neglected. The present study investigated the mechanisms of interference of gold NPs and silver NPs in assay systems implemented in HTS including optical interference as well as adsorption or catalysis. The conventional assays selected cover all optical read-out systems, that is, absorbance (XTT toxicity assay), fluorescence (CytoTox-ONE Homogeneous membrane integrity assay), and luminescence (CellTiter Glo luminescent assay). Furthermore, this study demonstrated NP quenching of fluorescent dyes also used in HTS (2′,7′-dichlorofluorescein, propidium iodide, and 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl-benzamidazolocarbocyanin iodide). To conclude, NP interference is, as such, not a novel concept, however, ignoring this aspect in HTS may jeopardize attempts in predictive toxicology. It should be mandatory to report the assessment of all mechanisms of interference within HTS, as well as to confirm results with label-free methodologies to ensure reliable big data generation for predictive toxicology.


2007 ◽  
Vol 7 (4) ◽  
pp. 577-585 ◽  
Author(s):  
Claudio Stagni ◽  
Carlotta Guiducci ◽  
Luca Benini ◽  
Bruno Ricco ◽  
Sandro Carrara ◽  
...  

2020 ◽  
Author(s):  
Nikolas Hundt

Abstract Single-molecule imaging has mostly been restricted to the use of fluorescence labelling as a contrast mechanism due to its superior ability to visualise molecules of interest on top of an overwhelming background of other molecules. Recently, interferometric scattering (iSCAT) microscopy has demonstrated the detection and imaging of single biomolecules based on light scattering without the need for fluorescent labels. Significant improvements in measurement sensitivity combined with a dependence of scattering signal on object size have led to the development of mass photometry, a technique that measures the mass of individual molecules and thereby determines mass distributions of biomolecule samples in solution. The experimental simplicity of mass photometry makes it a powerful tool to analyse biomolecular equilibria quantitatively with low sample consumption within minutes. When used for label-free imaging of reconstituted or cellular systems, the strict size-dependence of the iSCAT signal enables quantitative measurements of processes at size scales reaching from single-molecule observations during complex assembly up to mesoscopic dynamics of cellular components and extracellular protrusions. In this review, I would like to introduce the principles of this emerging imaging technology and discuss examples that show how mass-sensitive iSCAT can be used as a strong complement to other routine techniques in biochemistry.


2003 ◽  
Vol 773 ◽  
Author(s):  
Myung-Il Park ◽  
Jonging Hong ◽  
Dae Sung Yoon ◽  
Chong-Ook Park ◽  
Geunbae Im

AbstractThe large optical detection systems that are typically utilized at present may not be able to reach their full potential as portable analysis tools. Accurate, early, and fast diagnosis for many diseases requires the direct detection of biomolecules such as DNA, proteins, and cells. In this research, a glass microchip with integrated microelectrodes has been fabricated, and the performance of electrochemical impedance detection was investigated for the biomolecules. We have used label-free λ-DNA as a sample biomolecule. By changing the distance between microelectrodes, the significant difference between DW and the TE buffer solution is obtained from the impedance-frequency measurements. In addition, the comparison for the impedance magnitude of DW, the TE buffer, and λ-DNA at the same distance was analyzed.


Sign in / Sign up

Export Citation Format

Share Document