scholarly journals Assessment of agglomeration, co-sedimentation and trophic transfer of titanium dioxide nanoparticles in a laboratory-scale predator-prey model system

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Govind Sharan Gupta ◽  
Ashutosh Kumar ◽  
Rishi Shanker ◽  
Alok Dhawan
2013 ◽  
Vol 06 (02) ◽  
pp. 1350005 ◽  
Author(s):  
KRISHNA PADA DAS ◽  
SANJAY CHAUDHURI

Predator–prey model with harvesting is well studied. The role of disease in such system has a great importance and cannot be ignored. In this study we have considered a predator–prey model with disease circulating in the predator population only and we have also considered harvesting in the prey and in the susceptible predator. We have studied the local stability, Hopf bifurcation of the model system around the equilibria. We have derived the ecological and the disease basic reproduction numbers and we have observed its importance in the community structure of the model system and in controlling disease propagation in the predator population. We have paid attention to chaotic dynamics for increasing the force of infection in the predator. Chaotic population dynamics can exhibit irregular fluctuations and violent oscillations with extremely small or large population abundances. In this study main objective is to show the role of harvesting in controlling chaotic dynamics. It is observed that reasonable harvesting on the prey and the susceptible predator prevents chaotic dynamics.


2016 ◽  
Vol 09 (06) ◽  
pp. 1650085 ◽  
Author(s):  
Lakshmi Narayan Guin ◽  
Benukar Mondal ◽  
Santabrata Chakravarty

The pattern formation in reaction–diffusion system has long been the subject of interest to the researchers in the domain of mathematical ecology because of its universal existence and importance. The present investigation deals with a spatial dynamics of the Beddington–DeAngelis predator–prey model in the presence of a constant proportion of prey refuge. The model system representing boundary value problem under study is subjected to homogeneous Neumann boundary conditions. The asymptotic stability including the local and the global stability and the bifurcation as well of the unique positive homogeneous steady state of the corresponding temporal model has been analyzed. The Turing instability region in two-parameter space and the condition of diffusion-driven instability of the spatiotemporal model are investigated. Based on the appropriate numerical simulations, the present model dynamics in Turing space appears to get influenced by prey refuge while it exhibits diffusion-controlled pattern formation growth to spots, stripe-spot mixtures, labyrinthine, stripe-hole mixtures and holes replication. The results obtained appear to enrich the findings of the model system under consideration.


Sign in / Sign up

Export Citation Format

Share Document