scholarly journals TRPM2 regulates TXNIP-mediated NLRP3 inflammasome activation via interaction with p47 phox under high glucose in human monocytic cells

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Hisa Hui Ling Tseng ◽  
Chi Teng Vong ◽  
Yiu Wa Kwan ◽  
Simon Ming-Yuen Lee ◽  
Maggie Pui Man Hoi
2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Yanjuan Hou ◽  
Qian Wang ◽  
Baosheng Han ◽  
Yiliang Chen ◽  
Xi Qiao ◽  
...  

AbstractTubulointerstitial inflammation plays a key role in the pathogenesis of diabetic nephropathy (DN). Interleukin-1β (IL-1β) is the key proinflammatory cytokine associated with tubulointerstitial inflammation. The NLRP3 inflammasome regulates IL-1β activation and secretion. Reactive oxygen species (ROS) represents the main mediator of NLRP3 inflammasome activation. We previously reported that CD36, a class B scavenger receptor, mediates ROS production in DN. Here, we determined whether CD36 is involved in NLRP3 inflammasome activation and explored the underlying mechanisms. We observed that high glucose induced-NLRP3 inflammasome activation mediate IL-1β secretion, caspase-1 activation, and apoptosis in HK-2 cells. In addition, the levels of CD36, NLRP3, and IL-1β expression (protein and mRNA) were all significantly increased under high glucose conditions. CD36 knockdown resulted in decreased NLRP3 activation and IL-1β secretion. CD36 knockdown or the addition of MitoTempo significantly inhibited ROS production in HK-2 cells. CD36 overexpression enhanced NLRP3 activation, which was reduced by MitoTempo. High glucose levels induced a change in the metabolism of HK-2 cells from fatty acid oxidation (FAO) to glycolysis, which promoted mitochondrial ROS (mtROS) production after 72 h. CD36 knockdown increased the level of AMP-activated protein kinase (AMPK) activity and mitochondrial FAO, which was accompanied by the inhibition of NLRP3 and IL-1β. The in vivo experimental results indicate that an inhibition of CD36 could protect diabetic db/db mice from tubulointerstitial inflammation and tubular epithelial cell apoptosis. CD36 mediates mtROS production and NLRP3 inflammasome activation in db/db mice. CD36 inhibition upregulated the level of FAO-related enzymes and AMPK activity in db/db mice. These results suggest that NLRP3 inflammasome activation is mediated by CD36 in renal tubular epithelial cells in DN, which suppresses mitochondrial FAO and stimulates mtROS production.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Bin Leng ◽  
Yingjie Zhang ◽  
Xinran Liu ◽  
Zhen Zhang ◽  
Yang Liu ◽  
...  

Long-term exposure to high glucose induces vascular endothelial inflammation that can result in cardiovascular disease. Astragaloside IV (As-IV) is widely used for anti-inflammatory treatment of cardiovascular diseases. However, its mechanism of action is still not fully understood. In this study, we investigated the effect of As-IV on high glucose-induced endothelial inflammation and explored its possible mechanisms. In vivo, As-IV (40 and 80 mg/kg/d) was orally administered to rats for 8 weeks after a single intraperitoneal injection of streptozotocin (STZ, 65 mg/kg). In vitro, human umbilical vein endothelial cells (HUVECs) were treated with high glucose (33 mM glucose) in the presence or absence of As-IV, NPS2143 (CaSR inhibitor), BAY 11-7082 (NF-κB p65 inhibitor), and INF39 (NLRP3 inhibitor), and overexpression of CaSR was induced by infection of CaSR-overexpressing lentiviral vectors to further discuss the anti-inflammatory property of As-IV. The results showed that high glucose increased the expression of interleukin-18 (IL-18), interleukin-1β (IL-1β), NLRP3, caspase-1, and ASC, as well as the protein level of TLR4, nucleus p65, and CaSR. As-IV can reverse these changes in vivo and in vitro. Meanwhile, NPS2143, BAY 11-7082, and INF39 could significantly abolish the high glucose-enhanced NLRP3, ASC, caspase-1, IL-18, and IL-1β expression in vitro. In addition, both NPS2143 and BAY 11-7082 attenuated high glucose-induced upregulation of NLRP3, ASC, caspase-1, IL-18, and IL-1β expression. In conclusion, this study suggested that As-IV could inhibit high glucose-induced NLRP3 inflammasome activation and subsequent secretion of proinflammatory cytokines via inhibiting TLR4/NF-κB signaling pathway and CaSR, which provides new insights into the anti-inflammatory activity of As-IV.


2021 ◽  
Vol 11 (7) ◽  
pp. 896
Author(s):  
Yuan Li ◽  
Weihong Long ◽  
Menghan Gao ◽  
Fangtai Jiao ◽  
Zecai Chen ◽  
...  

Background: TREM2 expressed on microglia plays an important role in modulating inflammation in neurodegenerative diseases. It remains unknown whether TREM2 modulates hyperglycemia-induced microglial inflammation. Methods: We investigated the molecular function of TREM2 in high glucose-induced microglial inflammation using western blotting, qPCR, ELISA, pulldown, and co-IP methods. Results: Our data showed that in high glucose-induced BV2 cells, TREM2 was increased, and the proinflammatory cytokine IL-1β was increased. TREM2 knockout (KO) attenuated the proinflammatory cytokine IL-1β; conversely, TREM2 overexpression (OE) exacerbated IL-1β expression. Furthermore, we found that high glucose promoted the interaction of TREM2 with NLRP3. TREM2 KO abolished the interaction of TREM2 with NLRP3, while TREM2 OE enhanced the interaction. Moreover, TREM2 KO reduced high glucose-induced NLRP3 inflammasome activation, and TREM2 OE augmented high glucose-induced NLRP3 inflammasome activation, indicating that high glucose enhances the expression of TREM2, which activates the NLRP3 inflammasome. To further clarify whether the NLRP3 signaling pathway mediates the TREM2-regulated inflammatory response, we blocked the NLRP3 inflammasome by knocking out NLRP3 and treating cells with a caspase1 inhibitor, which decreased the levels of the IL-1β proinflammatory cytokine but did not affect the high glucose-induced expression of TREM2. Conclusions: TREM2 modulates high glucose-induced microglial inflammation via the NLRP3 signaling pathway.


2017 ◽  
Vol 43 (1) ◽  
pp. 247-256 ◽  
Author(s):  
Jiezhi Dai ◽  
Xiaotian Zhang ◽  
Li Li ◽  
Hua  Chen ◽  
Yimin Chai

Background: Type 2 diabetes is a persistent inflammatory response that impairs the healing process. We hypothesized that stimulation with high glucose following a pro-inflammatory signal would lead to autophagy inhibition, reactive oxygen species (ROS) production and eventually to the activation of the Nod-like receptor protein (NLRP) -3. Methods: Macrophages were isolated from human diabetic wound. We measured the expression of NLRP3, caspase1 and interleukin-1 beta (IL-1β) by western blot and real-time PCR, and the surface markers on cells by flow cytometry. THP-1-derived macrophages exposed to high glucose were applied to study the link between autophagy, ROS and NLRP3 activation. LC3-II, P62, NLRP3 inflammation and IL-1β expression were measured by western blot and real-time PCR. ROS production was measured with a Cellular Reactive Oxygen Species Detection Assay Kit. Results: Macrophages isolated from diabetic wounds exhibited a pro-inflammatory phenotype, including sustained NLRP3 inflammasome activity associated with IL-1β secretion. Our data showed that high glucose inhibited autophagy, induced ROS production, and activated NLRP3 inflammasome and cytokine secretion in THP-1-derived macrophages. To study high glucose-induced NLRP3 inflammasome signalling, we performed studies using an autophagy inducer, a ROS inhibitor and a NLRP3 inhibitor and found that all reduced the NLRP3 inflammasome activation and cytokine secretion. Conclusion: Sustained NLRP3 inflammasome activity in wound-derived macrophages contributes to the hyper-inflammation in human diabetic wounds. Autophagy inhibition and ROS generation play an essential role in high glucose-induced NLRP3 inflammasome activation and cytokine secretion in macrophages.


Sign in / Sign up

Export Citation Format

Share Document