ampk activity
Recently Published Documents


TOTAL DOCUMENTS

364
(FIVE YEARS 95)

H-INDEX

59
(FIVE YEARS 5)

Cell Research ◽  
2021 ◽  
Author(s):  
Che-Chia Hsu ◽  
Yau-Sheng Tsai ◽  
Hui-Kuan Lin
Keyword(s):  

2021 ◽  
Author(s):  
Florent PEGLION ◽  
Lavinia Capuana ◽  
Isabelle Perfettini ◽  
Ben braithwaite ◽  
Flora Llense ◽  
...  

PTEN is one of the most frequently mutated tumor suppressor gene in cancer. PTEN is generally altered in invasive cancers such as glioblastomas, but its function in collective cell migration and invasion is not fully characterized. Herein, we report that the loss of PTEN increases cell speed during collective migration of non-tumourous cells both in vitro and in vivo. We further show that loss of PTEN promotes LKB1-dependent phosphorylation and activation of the major metabolic regulator AMPK. In turn AMPK increases VASP phosphorylation, reduces VASP localization at cell-cell junctions and decreases the interjunctional transverse actin arcs at the leading front, provoking a weakening of cell-cell contacts and increasing migration speed. Targeting AMPK activity not only slows down PTEN-depleted cells, it also limits PTEN-null glioblastoma cell invasion, opening new opportunities to treat glioblastoma lethal invasiveness.


Author(s):  
Haiyan Wang ◽  
Edward B. Arias ◽  
Jonas T. Treebak ◽  
Gregory D. Cartee

Previous studies demonstrated that acute exercise can enhance glucose uptake (GU), γ3-AMPK activity, and Akt Substrate of 160 kDa (AS160) phosphorylation in skeletal muscles from low fat diet (LFD) and high fat diet (HFD) fed male rats. Because little is known about exercise-effects on these outcomes in females, we assessed postexercise GU by muscles incubated ±insulin, delta-insulin GU (GU of muscles incubated with insulin minus GU uptake of paired muscles incubated without insulin), and muscle signaling proteins from female rats fed a LFD or brief-HFD (2wk). Rats were sedentary (LFD-SED, HFD-SED) or swim-exercised. Immediately postexercise (IPEX) or 3h postexercise (3hPEX), epitrochlearis muscles were incubated (no insulin IPEX; ±insulin 3hPEX) to determine GU. Muscle γ3-AMPK activity (IPEX, 3hPEX) and phosphorylated AS160 (pAS160; 3hPEX) were also assessed. γ3-AMPK activity and insulin-independent GU of IPEX-rats exceeded sedentary-rats without diet-related differences in either outcome. At 3hPEX, both GU by insulin-stimulated muscles and delta-insulin GU exceeded their respective diet-matched sedentary controls. GU by insulin-stimulated muscles, but not delta-insulin GU for LFD-3hPEX exceeded HFD-3hPEX. LFD-3hPEX versus LFD-SED had greater γ3-AMPK activity and greater pAS160. HFD-3hPEX exceeded HFD-SED for pAS160, but not for γ3-AMPK activity. pAS160 and γ3-AMPK at 3hPEX did not differ between diet-groups. These results revealed that increased γ3-AMPK activity at 3hPEX was not essential for greater GU in insulin-stimulated muscle or greater delta-insulin GU in HFD-female rats. Similarly elevated γ3-AMPK activity in LFD-IPEX versus HFD-IPEX and pAS160 in LFD-3hPEX versus HFD-3hPEX may contribute to the comparable, delta-insulin GU at 3hPEX in both diet groups.


Author(s):  
Bolin Hou ◽  
Erwei Li ◽  
Jingnan Liang ◽  
Shuchun Liu ◽  
Huaiyi Yang ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (12) ◽  
Author(s):  
Yanfeng Liu ◽  
Yingying Xu ◽  
Fan Wang ◽  
Yu Tong ◽  
Hongchang Li ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4317
Author(s):  
Yan-Xi Chen ◽  
Phuong Thu Nguyen Le ◽  
Tsai-Teng Tzeng ◽  
Thu-Ha Tran ◽  
Anh Thuc Nguyen ◽  
...  

Declines in physiological functions are the predominant risk factors for age-related diseases, such as cancers and neurodegenerative diseases. Therefore, delaying the aging process is believed to be beneficial in preventing the onset of age-related diseases. Previous studies have demonstrated that Graptopetalum paraguayense (GP) extract inhibits liver cancer cell growth and reduces the pathological phenotypes of Alzheimer’s disease (AD) in patient IPS-derived neurons. Here, we show that GP extract suppresses β-amyloid pathology in SH-SYS5Y-APP695 cells and APP/PS1 mice. Moreover, AMP-activated protein kinase (AMPK) activity is enhanced by GP extract in U87 cells and APP/PS1 mice. Intriguingly, GP extract enhances autophagy in SH-SYS5Y-APP695 cells, U87 cells, and the nematode Caenorhabditis elegans, suggesting a conserved molecular mechanism by which GP extract might regulate autophagy. In agreement with its role as an autophagy activator, GP extract markedly diminishes mobility decline in polyglutamine Q35 mutants and aged wild-type N2 animals in C. elegans. Furthermore, GP extract significantly extends lifespan in C. elegans.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 5966
Author(s):  
Noémie Legrand ◽  
Amandine Pradier ◽  
Laury Poulain ◽  
Sarah Mouche ◽  
Rudy Birsen ◽  
...  

The treatment of acute myeloid leukemia (AML) remains a challenge especially among the elderly. The Bcl-2 inhibitor venetoclax recently showed significant survival benefits in AML patients when combined to low-dose cytarabine or azacitidine. Bcl-2 inhibition initiate mitochondrial apoptosis, but also respiration and cellular ATP production in AML. AMP-Activated Protein Kinase (AMPK) is a central energy sensor activated by increased AMP:ATP ratio to restore the cellular energy balance. Unexpectedly, we observed that venetoclax inhibited AMPK activity through caspase-dependent degradation of AMPK subunits in AML cells. On the other hand, genetic models of AMPK invalidation and re-expression suggested that AMPK participated to the early stages of apoptotic response through a negative regulation of multi-domain anti-apoptotic effectors such as Mcl-1 or Bcl-xL. Together our results suggested a new link between AMPK and Bcl-2-dependent mitochondrial apoptosis that participated to the anti-leukemic activity of venetoclax in AML.


2021 ◽  
Author(s):  
Jian Zhuo ◽  
Haihua Geng ◽  
Lihong Yao ◽  
Xiaohui Wu ◽  
Mengkang Fan ◽  
...  

Abstract PRKAG2 cardiac syndrome, as a common form of metabolic hypertrophic cardiomyopathy (HCM) caused by mutations in PRKAG2 gene, often shows myocardial hypertrophy and abnormal glycogen deposition in cardiomyocytes. However, it remains incurable due to lacking of a management guideline for treatment. Herein, a β1-AR blocker Metoprolol was applied to 5 patients with PRKAG2 cardiac syndrome identified from a PRKAG2 R302Q mutant family, resulting in significantly postponed progression of cardiac hypertrophy. Overexpression of PRKAG2 R302Q in primary cardiomyocytes increased the activity of AMPK, induced cellular hypertrophy and glycogen storage, and promoted the phosphorylation levels of AKT-mTOR signaling. Application of either β1-AR blocker metoprolol or protein kinase A (PKA) inhibitor H89 to the cardiomyocytes rescued the HCM-like phenotypes induced by PRKAG2 R302Q, including suppression of both AKT-mTOR phosphorylation and AMPK activity. In conclusion, the current study not only determined the mechanism regulating HCM induced by PRKAG2 R302Q mutant, but also demonstrated a therapeutic strategy using β1-AR blocker to treat the patients with PRKAG2 cardiac syndrome.


Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 4050
Author(s):  
Min-Yu Chung ◽  
Hyo-Kyoung Choi ◽  
Jin-Taek Hwang

Diabetes is a metabolic syndrome characterized by inadequate blood glucose control and is associated with reduced quality of life and various complications, significantly shortening life expectancy. Natural phytochemicals found in plants have been traditionally used as medicines for the prevention of chronic diseases including diabetes in East Asia since ancient times. Many of these phytochemicals have been characterized as having few side effects, and scientific research into the mechanisms of action responsible has accumulated mounting evidence for their efficacy. These compounds, which may help to prevent metabolic syndrome disorders including diabetes, act through relevant intracellular signaling pathways. In this review, we examine the anti-diabetic efficacy of several compounds and extracts derived from medicinal plants, with a focus on AMP-activated protein kinase (AMPK) activity.


Author(s):  
Julian D. Gross ◽  
Catherine J. Pears

mTORC1 and AMPK are mutually antagonistic sensors of nutrient and energy status that have been implicated in many human diseases including cancer, Alzheimer’s disease, obesity and type 2 diabetes. Starved cells of the social amoeba Dictyostelium discoideum aggregate and eventually form fruiting bodies consisting of stalk cells and spores. We focus on how this bifurcation of cell fate is achieved. During growth mTORC1 is highly active and AMPK relatively inactive. Upon starvation, AMPK is activated and mTORC1 inhibited; cell division is arrested and autophagy induced. After aggregation, a minority of the cells (prestalk cells) continue to express much the same set of developmental genes as during aggregation, but the majority (prespore cells) switch to the prespore program. We describe evidence suggesting that overexpressing AMPK increases the proportion of prestalk cells, as does inhibiting mTORC1. Furthermore, stimulating the acidification of intracellular acidic compartments likewise increases the proportion of prestalk cells, while inhibiting acidification favors the spore pathway. We conclude that the choice between the prestalk and the prespore pathways of cell differentiation may depend on the relative strength of the activities of AMPK and mTORC1, and that these may be controlled by the acidity of intracellular acidic compartments/lysosomes (pHv), cells with low pHv compartments having high AMPK activity/low mTORC1 activity, and those with high pHv compartments having high mTORC1/low AMPK activity. Increased insight into the regulation and downstream consequences of this switch should increase our understanding of its potential role in human diseases, and indicate possible therapeutic interventions.


Sign in / Sign up

Export Citation Format

Share Document