CHAPTER 15. Tipula abdominalis: a Natural Biorefinery with Novel Microbial Enzymes Useful for Pectin-Rich Biomass Deconstruction

Author(s):  
Dana M. Schneider ◽  
Emily D. Henriksen ◽  
Whitney E. Boland ◽  
Meredith C. Edwards ◽  
Joy Doran-Peterson
Author(s):  
Rakhi Dhankhar ◽  
Anubhuti Kawatra ◽  
Aparajita Mohanty ◽  
Pooja Gulati

Abstract:: Enzyme prodrug therapy has gained momentum in the recent years due to their ability to improve therapeutic index (benefits versus toxic side-effects) and efficacy of chemotherapy in cancer treatment. Inactive prodrugs used in this system are converted into active anti-cancerous drugs by enzymes, specifically within the tumor cells. This therapy involves three components namely prodrug, enzyme and gene delivery vector. Past reports have clearly indicated that the choice of enzyme used, is the major determinant for the success of this therapy. Generally, enzymes from non-human sources are employed to avoid off-target toxicity. Exogenous enzymes also give a better control to the clinician regarding the calibration of treatment by site-specific initiation. Amongst these exo-enzymes, microbial enzymes are preferred due to their high productivity, stability and ease of manipulation. The present review focuses on the commonly used microbial enzymes particularly cytosine deaminase, nitroreductase, carboxypeptidase, purine nucleoside phosphorylase in prodrug activation therapy. Various aspects viz. source of the enzymes, types of cancer targeted, mode of action and efficacy of the enzyme/prodrug system, efficient vectors used and recent research developments of each of these enzymes are comprehensively elaborated. Further, the results of the clinical trials and various strategies to improve their clinical applicability are also discussed.


2019 ◽  
Vol 38 (4) ◽  
pp. 251-264 ◽  
Author(s):  
Jason M. Koontz ◽  
Blair C. R. Dancy ◽  
Cassandra L. Horton ◽  
Jonathan D. Stallings ◽  
Valerie T. DiVito ◽  
...  

There is overwhelming evidence that the microbiome must be considered when evaluating the toxicity of chemicals. Disruption of the normal microbial flora is a known effect of toxic exposure, and these disruptions may lead to human health effects. In addition, the biotransformation of numerous compounds has been shown to be dependent on microbial enzymes, with the potential for different host health outcomes resulting from variations in the microbiome. Evidence suggests that such metabolism of environmental chemicals by enzymes from the host's microbiota can affect the toxicity of that chemical to the host. Chemical-microbial interactions can be categorized into two classes: Microbiome Modulation of Toxicity (MMT) and Toxicant Modulation of the Microbiome (TMM). MMT refers to transformation of a chemical by microbial enzymes or metabolites to modify the chemical in a way that makes it more or less toxic. TMM is a change in the microbiota that results from a chemical exposure. These changes span a large magnitude of effects and may vary from microbial gene regulation, to inhibition of a specific enzyme, to the death of the microbes. Certain microbiomes or microbiota may become associated with different health outcomes, such as resistance or susceptibility to exposure to certain toxic chemicals, the ability to recover following a chemical-induced injury, the presence of disease-associated phenotypes, and the effectiveness of immune responses. Future work in toxicology will require an understanding of how the microbiome interacts with toxicants to fully elucidate how a compound will affect a diverse, real-world population.


2015 ◽  
Vol 394 (1-2) ◽  
pp. 315-327 ◽  
Author(s):  
Liang Kou ◽  
Weiwei Chen ◽  
Xinyu Zhang ◽  
Wenlong Gao ◽  
Hao Yang ◽  
...  

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Gabriel Paës ◽  
David Navarro ◽  
Yves Benoit ◽  
Senta Blanquet ◽  
Brigitte Chabbert ◽  
...  

Author(s):  
Ornella M Ontañon ◽  
Soma Bedő ◽  
Silvina Ghio ◽  
Mercedes M Garrido ◽  
Juliana Topalian ◽  
...  

Abstract One of the main distinguishing features of bacteria belonging to the Cellulomonas genus is their ability to secrete multiple polysaccharide degrading enzymes. However, their application in biomass deconstruction still constitutes a challenge. We addressed the optimisation of the xylanolytic activities in extracellular enzymatic extracts of Cellulomonas sp. B6 and Cellulomonas fimi B-402 for their subsequent application in lignocellulosic biomass hydrolysis by culture in several substrates. As demonstrated by secretomic profiling, wheat bran and waste paper resulted to be suitable inducers for the secretion of xylanases of Cellulomonas sp. B6 and C. fimi B-402, respectively. Both strains showed high xylanolytic activity in culture supernatant although Cellulomonas sp. B6 was the most efficient xylanolytic strain. Upscaling from flasks to fermentation in a bench scale bioreactor resulted in equivalent production of extracellular xylanolytic enzymatic extracts and freeze drying was a successful method for concentration and conservation of the extracellular enzymes, retaining 80% activity. Moreover, enzymatic cocktails composed of combined extra and intracellular extracts effectively hydrolysed the hemicellulose fraction of extruded barley straw into xylose and xylooligosaccharides. Key points • Secreted xylanase activity of Cellulomonas sp. B6 and C. fimi was maximised. • Biomass-induced extracellular enzymes were identified by proteomic profiling. • Combinations of extra and intracellular extracts were used for barley straw hydrolysis.


2009 ◽  
Vol 20 (9) ◽  
pp. 1064-1073 ◽  
Author(s):  
Stijn Lagaert ◽  
Tim Beliën ◽  
Guido Volckaert

2014 ◽  
Vol 99 (5) ◽  
pp. 2165-2178 ◽  
Author(s):  
Anatoli Tchigvintsev ◽  
Hai Tran ◽  
Ana Popovic ◽  
Filip Kovacic ◽  
Greg Brown ◽  
...  

1987 ◽  
Vol 93 (2) ◽  
pp. 97-104 ◽  
Author(s):  
P. A. Albini ◽  
D. E. Briggs ◽  
A. Wadeson
Keyword(s):  

1978 ◽  
Vol 42 (7) ◽  
pp. 1439-1440
Author(s):  
Tadaaki Komori ◽  
Kiyohiko Kunugita ◽  
Kunio Nakahara ◽  
Hatsuo Aoki ◽  
Hiroshi Imanaka
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document