Barley Straw
Recently Published Documents


TOTAL DOCUMENTS

733
(FIVE YEARS 150)

H-INDEX

52
(FIVE YEARS 13)

Author(s):  
Feng Cao ◽  
Hongxia Qiao ◽  
Yuanke Li ◽  
Xiuyuan Shu ◽  
Lijun Cui

2021 ◽  
Vol 9 ◽  
Author(s):  
Obiora S. Agu ◽  
Lope G. Tabil ◽  
Edmund Mupondwa ◽  
Bagher Emadi

Microwave (MW)-assisted torrefaction and pelleting could enhance biomass fuel properties and energy applications. Plastic wastes are considered as a replacement source binder in pellets to minimize their effect on the environment as pollutants. High-density polyethylene (HDPE), an extractable plastic from recycling waste, was investigated as a binder for torrefied wheat and barley straw pellets. Fuel pellet characteristics, such as durability, density, tensile strength, and water absorption, were used to evaluate the pellets produced from a single pelleting test. The results showed that the addition of HDPE as a binder significantly increased the pellet quality in terms of density (686.12–982.93 kg/m3), tensile strength (3.68 and 4.53 MPa) for wheat and barley straw, and reduced ash content of the pellet from 10.34 to 4.59% for barley straw pellet and 10.66 to 3.88% for wheat straw pellets. The higher heating value (HHV) increased with increasing biochar mix and HDPE binder blend. The highest HHV value observed for barley straw was 28.34 MJ/kg, while wheat straw was 29.78 MJ/kg. The study further indicated that MW torrefaction of biomass-biochar mix with HDPE binder reduced the moisture adsorption of wheat and barley straw pellets, which can significantly improve their storage capability in humid locations. The moisture uptake ratio for MW-torrefied barley straw pellets was 0.10–0.25 and wheat straw pellets 0.11–0.25 against a moisture uptake ratio of 1.0 for untreated biomass. MW torrefaction of wheat and barley straw with biochar and HDPE binder addition during pelleting is a promising technique to improve biomass fuel pellet properties.


Author(s):  
N A Mostafa ◽  
Sabah Mohamed Farouk ◽  
S M S Abdelhamid ◽  
Aliaa M Monazie
Keyword(s):  

Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1773
Author(s):  
Mulugeta Tilahun Keno ◽  
Taye Tolemariam ◽  
Solomon Demeke ◽  
Jane Wamatu ◽  
Ashraf Alkhtib ◽  
...  

Twenty lambs (18 ± 0.22 kg initial weight) were blocked by weight and individually assigned into pens to evaluate the effects of barley straw variety on digestibility, growth performance and carcass characteristics. The following four treatments were tested: (1) a local barley straw (as control), (2) HB1963 (high grain and straw yields), (3) Traveller (high straw yielder), and (4) IBON174/03 (high grain yielder). A concentrate (50:50 wheat bran and noug seed cake) was offered constantly (300 DM g), whereas the straw was offered ad libitum. The digestibility trial lasted 22 days (15 days to adapt to dietary treatments and 7 days for sampling). The growth performance trial lasted 90 days. At the end, all of the lambs were slaughtered, and their carcasses were evaluated. The IBON174/03 variety had a higher (p < 0.05) intake of organic matter and crude protein, a higher dry matter and organic matter digestibility than the control, and a faster growth than the control. The feed-to-gain ratio was similar among treatments. The slaughter and empty body weights of lambs in the IBON174/03 group were higher than the control variety (p < 0.05). The present study showed that the feeding value of barley straw can differ substantially between varieties and therefore must be considered in the choice of a barley variety.


2021 ◽  
Vol 11 (12) ◽  
pp. 5349
Author(s):  
Eleonora Carota ◽  
Silvia Crognale ◽  
Cristina Russo ◽  
Maurizio Petruccioli ◽  
Alessandro D’Annibale

The genus Aspergillus encompasses several species with relevant lignocellulose-degrading capacity, and a novel species, denominated A. olivimuriae, was recently discovered after its isolation from table olive brine. The acquisition of insight into this species and the assessment of its potential relied on a bioinformatics approach, based on the CAZy database, associated with enzymatic activity profiles in solid-state cultures on four different types of waste, including residual thistle biomass (RTB), spent coffee grounds (SCG), digestate solid fraction and barley straw. The CAZy analysis of A. olivimuriae genome showed that the number of predicted genes for each family was close to that of other Aspergillus species, except for cellobiose dehydrogenase, acetyl xylan esterase and polygalacturonases. In A. olivimuriae solid-state cultures, hemicellulose degradation outperformed that of cellulose, and lignin removal did not occur, regardless of the growth substrate. This is in line with its CAZy content and the extent of hemicellulolytic, and ligninolytic activities detected in its solid-state cultures. RTB and barley straw were the substrates enabling the best glycosyl hydrolase production levels. The exception was SCG, the hemicellulose composition of which, mainly made of glucomannans and galactomanans, led to the highest β-mannanase and β-mannosidase production levels (3.72 ± 0.20 and 0.90 ± 0.04 IU g−1 substrate, respectively).


2021 ◽  
Vol 13 (11) ◽  
pp. 5879
Author(s):  
Mulugeta Tilahun Keno ◽  
Jane Wamatu ◽  
Ashraf Alkhtib ◽  
Taye Tolemariam ◽  
Solomon Demeke ◽  
...  

Barley straw serves as livestock feed and mulch for soil and water conservation in the mixed barley-livestock systems of the Ethiopian highlands. High demand for barley straw biomass in the system creates competition between the two uses. This study aimed to identify the determinants of the utilization of barley straw for mulch and feed. Data on the production and use of barley straw were collected from 236 households using a structured questionnaire. Use of the straw for the purposes of soil mulch at three levels, 0–15% (marginal mulching), 15–35% (optimal mulching), 35–100% (over-mulching), was analyzed using a multinomial logit model. The optimal proportion of barley straw used as soil mulch was positively affected by the educational level of the household head, family size, distance between cropping land and homestead, number of equines in the household and amount of straw production. Female-headed households were more likely to mulch less than the optimal amount of barley straw. In general, the more the farmer’s exposure to formal extension, the less the proportion of barley straw used for soil mulching. This study provides guidance for the proportional utilization of barley straw. This will contribute to the design of appropriate biomass utilization strategies in barley-livestock farming systems.


Author(s):  
Ornella M Ontañon ◽  
Soma Bedő ◽  
Silvina Ghio ◽  
Mercedes M Garrido ◽  
Juliana Topalian ◽  
...  

Abstract One of the main distinguishing features of bacteria belonging to the Cellulomonas genus is their ability to secrete multiple polysaccharide degrading enzymes. However, their application in biomass deconstruction still constitutes a challenge. We addressed the optimisation of the xylanolytic activities in extracellular enzymatic extracts of Cellulomonas sp. B6 and Cellulomonas fimi B-402 for their subsequent application in lignocellulosic biomass hydrolysis by culture in several substrates. As demonstrated by secretomic profiling, wheat bran and waste paper resulted to be suitable inducers for the secretion of xylanases of Cellulomonas sp. B6 and C. fimi B-402, respectively. Both strains showed high xylanolytic activity in culture supernatant although Cellulomonas sp. B6 was the most efficient xylanolytic strain. Upscaling from flasks to fermentation in a bench scale bioreactor resulted in equivalent production of extracellular xylanolytic enzymatic extracts and freeze drying was a successful method for concentration and conservation of the extracellular enzymes, retaining 80% activity. Moreover, enzymatic cocktails composed of combined extra and intracellular extracts effectively hydrolysed the hemicellulose fraction of extruded barley straw into xylose and xylooligosaccharides. Key points • Secreted xylanase activity of Cellulomonas sp. B6 and C. fimi was maximised. • Biomass-induced extracellular enzymes were identified by proteomic profiling. • Combinations of extra and intracellular extracts were used for barley straw hydrolysis.


2021 ◽  
Author(s):  
Feng Cao ◽  
Hongxia Qiao ◽  
Penghui Wang ◽  
Weijia Li

Abstract Highland barley straw ash contains a large amount of silica, and the ash calcined and ground under certain conditions has a higher pozzolanic effect. In order to study the effect of HBSA added into magnesium oxychloride cement mortar (MOCM) on the mechanical properties and pore structure, the activity of highland barley straw ash was studied firstly through the macroscopic mechanical properties test. Nuclear magnetic resonance (NMR) and Brunner−Emmet−Teller (BET) were used to test the distribution of full pore and micropore for MOCM respectively. The microstructure of MOCM was characterized by scanning electron microscope (SEM). The results illustrate that the highest activity of HBSA was obtained by calcining at 600℃ for 2h and grinding for 2h. The addition of HBSA has a significant effect on the mechanical properties and pore diameter distribution of MOCM. A large amount of M-S-H gel was generated in MOCM added with 10% HBSA content, and had a consequence of decreased proportion of larger pores and the increased proportion of micropores as well as the better mechanical properties and pore structure.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 726
Author(s):  
Merlin Raud ◽  
Lisandra Rocha-Meneses ◽  
Daniel J. Lane ◽  
Olli Sippula ◽  
Narasinha J. Shurpali ◽  
...  

During the bioethanol production process, vast amounts of residues are generated as process waste. To extract more value from lignocellulosic biomass and improve process economics, these residues should be used as feedstock in additional processes for the production of energy or fuels. In this paper, barley straw was used for bioethanol production and the residues were valorized using anaerobic digestion (AD) or used for the production of heat and power by combustion. A traditional three-step bioethanol production process was used, and the biomass residues obtained from different stages of the process were analyzed. Finally, mass and energy balances were calculated to quantify material flow and assess the different technological routes for biomass utilization. Up to 90 kg of ethanol could be produced from 1 t of biomass and additional biogas and energy generated from processing residues can increase the energy yield to over 220%. The results show that in terms of energy output, combustion was the preferable route for processing biomass residues. However, the production of biogas is also an attractive solution to increase revenue in the bioethanol production process.


Sign in / Sign up

Export Citation Format

Share Document