scholarly journals Tracking of enzymatic biomass deconstruction by fungal secretomes highlights markers of lignocellulose recalcitrance

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Gabriel Paës ◽  
David Navarro ◽  
Yves Benoit ◽  
Senta Blanquet ◽  
Brigitte Chabbert ◽  
...  
Author(s):  
Ornella M Ontañon ◽  
Soma Bedő ◽  
Silvina Ghio ◽  
Mercedes M Garrido ◽  
Juliana Topalian ◽  
...  

Abstract One of the main distinguishing features of bacteria belonging to the Cellulomonas genus is their ability to secrete multiple polysaccharide degrading enzymes. However, their application in biomass deconstruction still constitutes a challenge. We addressed the optimisation of the xylanolytic activities in extracellular enzymatic extracts of Cellulomonas sp. B6 and Cellulomonas fimi B-402 for their subsequent application in lignocellulosic biomass hydrolysis by culture in several substrates. As demonstrated by secretomic profiling, wheat bran and waste paper resulted to be suitable inducers for the secretion of xylanases of Cellulomonas sp. B6 and C. fimi B-402, respectively. Both strains showed high xylanolytic activity in culture supernatant although Cellulomonas sp. B6 was the most efficient xylanolytic strain. Upscaling from flasks to fermentation in a bench scale bioreactor resulted in equivalent production of extracellular xylanolytic enzymatic extracts and freeze drying was a successful method for concentration and conservation of the extracellular enzymes, retaining 80% activity. Moreover, enzymatic cocktails composed of combined extra and intracellular extracts effectively hydrolysed the hemicellulose fraction of extruded barley straw into xylose and xylooligosaccharides. Key points • Secreted xylanase activity of Cellulomonas sp. B6 and C. fimi was maximised. • Biomass-induced extracellular enzymes were identified by proteomic profiling. • Combinations of extra and intracellular extracts were used for barley straw hydrolysis.


2014 ◽  
Vol 31 ◽  
pp. S140
Author(s):  
Nicole Chua ◽  
Pui Yi Yung ◽  
Shivshankar Umashankar ◽  
I. Made Sudiana ◽  
Sanjay Swarup

2014 ◽  
Vol 80 (23) ◽  
pp. 7423-7432 ◽  
Author(s):  
Stephanie A. Eichorst ◽  
Chijioke Joshua ◽  
Noppadon Sathitsuksanoh ◽  
Seema Singh ◽  
Blake A. Simmons ◽  
...  

ABSTRACTMicrobial communities that deconstruct plant biomass have broad relevance in biofuel production and global carbon cycling. Biomass pretreatments reduce plant biomass recalcitrance for increased efficiency of enzymatic hydrolysis. We exploited these chemical pretreatments to study how thermophilic bacterial consortia adapt to deconstruct switchgrass (SG) biomass of various compositions. Microbial communities were adapted to untreated, ammonium fiber expansion (AFEX)-pretreated, and ionic-liquid (IL)-pretreated SG under aerobic, thermophilic conditions using green waste compost as the inoculum to study biomass deconstruction by microbial consortia. After microbial cultivation, gravimetric analysis of the residual biomass demonstrated that both AFEX and IL pretreatment enhanced the deconstruction of the SG biomass approximately 2-fold. Two-dimensional nuclear magnetic resonance (2D-NMR) experiments and acetyl bromide-reactive-lignin analysis indicated that polysaccharide hydrolysis was the dominant process occurring during microbial biomass deconstruction, and lignin remaining in the residual biomass was largely unmodified. Small-subunit (SSU) rRNA gene amplicon libraries revealed that although the dominant taxa across these chemical pretreatments were consistently represented by members of theFirmicutes, theBacteroidetes, andDeinococcus-Thermus, the abundance of selected operational taxonomic units (OTUs) varied, suggesting adaptations to the different substrates. Combining the observations of differences in the community structure and the chemical and physical structure of the biomass, we hypothesize specific roles for individual community members in biomass deconstruction.


Author(s):  
Andrei Stecca Steindorff ◽  
Luana Assis Serra ◽  
Eduardo Fernandes Formighieri ◽  
Fabrícia Paula de Faria ◽  
Marcio José Poças-Fonseca ◽  
...  

Most studies regarding the use of fungi as enzyme producers for biomass deconstruction have focused on mesophile species, whereas the potential of thermophiles has been evaluated less. This study revealed, through genome and transcriptome analyses, the genetic repertoire of the biotechnological relevant thermophile fungus Humicola grisea .


Sign in / Sign up

Export Citation Format

Share Document