Molecular simulations for adsorption and separation of natural gas in IRMOF-1 and Cu-BTC metal-organic frameworks

2008 ◽  
Vol 10 (47) ◽  
pp. 7085 ◽  
Author(s):  
Ana Martín-Calvo ◽  
Elena García-Pérez ◽  
Juan Manuel Castillo ◽  
Sofia Calero
Crystals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 406 ◽  
Author(s):  
Eyas Mahmoud ◽  
Labeeb Ali ◽  
Asmaa El Sayah ◽  
Sara Awni Alkhatib ◽  
Hend Abdulsalam ◽  
...  

Methane can be stored by metal-organic frameworks (MOFs). However, there remain challenges in the implementation of MOFs for adsorbed natural gas (ANG) systems. These challenges include thermal management, storage capacity losses due to MOF packing and densification, and natural gas impurities. In this review, we discuss discoveries about how MOFs can be designed to address these three challenges. For example, Fe(bdp) (bdp2− = 1,4-benzenedipyrazolate) was discovered to have intrinsic thermal management and released 41% less heat than HKUST-1 (HKUST = Hong Kong University of Science and Technology) during adsorption. Monolithic HKUST-1 was discovered to have a working capacity 259 cm3 (STP) cm−3 (STP = standard temperature and pressure equivalent volume of methane per volume of the adsorbent material: T = 273.15 K, P = 101.325 kPa), which is a 50% improvement over any other previously reported experimental value and virtually matches the 2012 Department of Energy (Department of Energy = DOE) target of 263 cm3 (STP) cm−3 after successful packing and densification. In the case of natural gas impurities, higher hydrocarbons and other molecules may poison or block active sites in MOFs, resulting in up to a 50% reduction of the deliverable energy. This reduction can be mitigated by pore engineering.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Elda Adatoz ◽  
Seda Keskin

Metal organic frameworks (MOFs) are a new group of nanomaterials that have been widely examined for various chemical applications. Gas separation using MOF membranes has become an increasingly important research field in the last years. Several experimental studies have shown that thin-film MOF membranes can outperform well known polymer and zeolite membranes due to their higher gas permeances and selectivities. Given the very large number of available MOF materials, it is impractical to fabricate and test the performance of every single MOF membrane using purely experimental techniques. In this study, we used molecular simulations, Monte Carlo and Molecular Dynamics, to estimate both single-gas and mixture permeances of MOF membranes. Predictions of molecular simulations were compared with the experimental gas permeance data of MOF membranes in order to validate the accuracy of our computational approach. Results show that computational methodology that we described in this work can be used to accurately estimate membrane properties of MOFs prior to extensive experimental efforts.


2017 ◽  
Vol 8 (1) ◽  
pp. 583-589 ◽  
Author(s):  
Hasan Babaei ◽  
Alan J. H. McGaughey ◽  
Christopher E. Wilmer

We investigate the effect of pore size and shape on the thermal conductivity of a series of idealized metal-organic frameworks (MOFs) containing adsorbed gas using molecular simulations.


Sign in / Sign up

Export Citation Format

Share Document