Nucleic acid-induced self-assembly of a platinum(ii) terpyridyl complex: detection of G-quadruplex formation and nuclease activity

2009 ◽  
pp. 3756 ◽  
Author(s):  
Cong Yu ◽  
Kenneth Hoi-Yiu Chan ◽  
Keith Man-Chung Wong ◽  
Vivian Wing-Wah Yam
2013 ◽  
Vol 41 (22) ◽  
pp. 10323-10333 ◽  
Author(s):  
Justin D. Lormand ◽  
Noah Buncher ◽  
Connor T. Murphy ◽  
Parminder Kaur ◽  
Marietta Y. Lee ◽  
...  

2021 ◽  
Author(s):  
Martin Volek ◽  
Sofia Kolesnikova ◽  
Katerina Svehlova ◽  
Pavel Srb ◽  
Ráchel Sgallová ◽  
...  

Abstract G-quadruplexes are noncanonical nucleic acid structures formed by stacked guanine tetrads. They are capable of a range of functions and thought to play widespread biological roles. This diversity raises an important question: what determines the biochemical specificity of G-quadruplex structures? The answer is particularly important from the perspective of biological regulation because genomes can contain hundreds of thousands of G-quadruplexes with a range of functions. Here we analyze the specificity of each sequence in a 496-member library of variants of a reference G-quadruplex with respect to five functions. Our analysis shows that the sequence requirements of G-quadruplexes with these functions are different from one another, with some mutations altering biochemical specificity by orders of magnitude. Mutations in tetrads have larger effects than mutations in loops, and changes in specificity are correlated with changes in multimeric state. To complement our biochemical data we determined the solution structure of a monomeric G-quadruplex from the library. The stacked and accessible tetrads rationalize why monomers tend to promote a model peroxidase reaction and generate fluorescence. Our experiments support a model in which the sequence requirements of G-quadruplexes with different functions are overlapping but distinct. This has implications for biological regulation, bioinformatics, and drug design.


FEBS Letters ◽  
2019 ◽  
Vol 593 (22) ◽  
pp. 3149-3161 ◽  
Author(s):  
Priyanka Toshniwal ◽  
Michelle Nguyen ◽  
Aurore Guédin ◽  
Helena Viola ◽  
Diwei Ho ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (10) ◽  
pp. e47233 ◽  
Author(s):  
Guy Caljon ◽  
Karin De Ridder ◽  
Benoît Stijlemans ◽  
Marc Coosemans ◽  
Stefan Magez ◽  
...  

2015 ◽  
Vol 36 (6) ◽  
pp. 1729-1732
Author(s):  
In Sun Kim ◽  
Young Jun Seo

2016 ◽  
Vol 7 (1) ◽  
pp. 20-26 ◽  
Author(s):  
Ferman A. Chavez ◽  
Gopalan Srinivasan

Abstract


RSC Advances ◽  
2015 ◽  
Vol 5 (55) ◽  
pp. 44714-44721 ◽  
Author(s):  
Siqi Zhang ◽  
Kun Wang ◽  
Zhenyu Li ◽  
Zhongmin Feng ◽  
Ting Sun

Upon adding THBV, the self-assembly of THBV with H1 allows the rest of the DNA sequence of H1 to accelerate H1–H2 complex formation. The G-quadruplex at the end of the H1–H2 complex could catalyze TMB into a colored product.


2021 ◽  
Author(s):  
Masaki Hagihara

Tandem guanine repeat sequences can adopt guanine quadruplex (G-quadruplex) structures and consecutive guanine repeat sequences can potentially afford multiple G-quadruplex structures. By using a reverse transcriptase stop assay and biophysical...


Sign in / Sign up

Export Citation Format

Share Document