Thermoresponsive gold nanoparticles with adjustable lower critical solution temperature as colorimetric sensors for temperature, pH and salt concentration

2010 ◽  
Vol 20 (2) ◽  
pp. 278-284 ◽  
Author(s):  
Xun-Yong Liu ◽  
Fa Cheng ◽  
Yi Liu ◽  
Wen-Gang Li ◽  
Yu Chen ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 443
Author(s):  
Runmei Li ◽  
Cong Cheng ◽  
Zhuorui Wang ◽  
Xuefan Gu ◽  
Caixia Zhang ◽  
...  

To verify the temperature sensitive failure of poly (N-isopropylacrylamide) (PNIPAM) anchored on the surface of gold nanoparticles (AuNPs), the UV-Vis spectra with temperature variations of the following aqueous solutions respectively containing AuNPs-PNIPAM, Au-PNIPAM/PNIPAM, PNIPAM, in different media (including salt, ethanol, HCl and cetyltrimethylammoniumbromide (CTAB)), were systematically determined. The results indicated that the UV-Vis spectrum of AuNPs-PNIPAM suspension hardly changed even above the Lower Critical Solution Temperature (LCST) of PNIPAM, but that of Au-PNIPAM/PNIPAM sharply increased only in absorbance intensity. A possible mechanism of the failed temperature sensitivity of PNIPAM anchored on the surface of AuNPs was proposed. Being different from free PNIPAM molecules, a strong interaction exists among PNIPAM molecules anchored on the surface of AuNPs, restraining the change in conformation of PNIPAM. The temperature sensitivity of Au-PNIPAM/PNIPAM originates from the free PNIPAM molecules rather than the anchored PNIPAM one. The changing electrostatic interaction could effectively regulate the aggregation behavior of AuNPs-PNIPAM and enhance its sensitivity to temperature.


2019 ◽  
Vol 10 (2) ◽  
pp. 260-266 ◽  
Author(s):  
Jin-Jin Li ◽  
Yin-Ning Zhou ◽  
Zheng-Hong Luo ◽  
Shiping Zhu

A polyelectrolyte-containing copolymer with a CO2/N2-switchable cloud point, resulting from the gas-induced alternation of hydrophilicity, was prepared.


2014 ◽  
Vol 5 (8) ◽  
pp. 3061-3070 ◽  
Author(s):  
Yohei Kotsuchibashi ◽  
Ravin Narain

Dual-temperature and pH responsive (ethylene glycol)-based nanogels were synthesized. Both the core and the shell of the nanogels showed a lower critical solution temperature (LCST) and the LCST of the shell was strongly affected by the solution pH and salt concentration due to the presence of carboxylic acid groups at the nanogel surface.


Sign in / Sign up

Export Citation Format

Share Document