Thermally conductive composite films of hexagonal boron nitride and polyimide with affinity-enhanced interfaces

2010 ◽  
Vol 20 (14) ◽  
pp. 2749 ◽  
Author(s):  
Kimiyasu Sato ◽  
Hitomi Horibe ◽  
Takashi Shirai ◽  
Yuji Hotta ◽  
Hiromi Nakano ◽  
...  
2020 ◽  
Vol 32 (10) ◽  
pp. 1181-1190 ◽  
Author(s):  
Ruiyi Li ◽  
Xiuwei Lv ◽  
Juan Yu ◽  
Xiaodong Wang ◽  
Pei Huang

In this study, silver–polydopamine–hexagonal boron nitride (h-BN@Ag) particles were prepared using mussel chemistry and reducibility of catechol. The modified method was simple and eco-friendly. In addition, we prepared h-BN@Ag/polyimide (PI) composite films via in situ polymerization, the scraper method, and thermal imidization. Owing to the good dispersion of the h-BN@Ag filler particles in the PI matrix and the bridging role of the Ag nanoparticles, the thermal conductivities of the h-BN@Ag/PI composite films were higher than that of the pure PI film. The thermal conductivity of the h-BN@Ag/PI film with the filler content of 10 wt% was 0.382 W (m·K)−1, which was 108% higher than that of pure PI films (0.184 W (m·K) −1). Furthermore, the composite films presented extremely low dielectric permittivity and loss tangent. Moreover, the heat resistance index of the composite films (304.6°C) was higher than that of pure PI (294.3°C). Thus, h-BN@Ag/PI composite films could be promising electronic packaging materials.


2019 ◽  
Vol 2019 (NOR) ◽  
pp. 000001-00005
Author(s):  
Ya Liu ◽  
Nan Wang ◽  
Lilei Ye ◽  
Abdelhafid Zehri ◽  
Andreas Nylander ◽  
...  

Abstract Thermally conductive materials with electrically insulating properties have been extensively investigated for thermal management of electronic devices. The combined properties of high thermal conductivity, structural stability, corrosion resistance and electric resistivity make hexagonal boron nitride (h-BN) a promising candidate for this purpose. Theoretical studies have revealed that h-BN has a high in-plane thermal conductivity up to 400 - 800 W m−1 K−1 at room temperature. However, it is still a big challenge to achieve high thermally conductive h-BN thick films that are commercially feasible due to its poor mechanical properties. On the other hand, many polymers exhibit advantages for flexibility. Thus, combining the merits of polymer and the high thermal conductivity of h-BN particles is considered as a promising solution for this issue. In this work, orientated PVP/h-BN films were prepared by electrospinning and a subsequent mechanical pressing process. With the optimized h-BN loading, a PVP/h-BN composite film with up to 22 W m−1 K−1 and 0.485 W m−1 K−1 for in-plane and through-plane thermal conductivity can be achieved, respectively. We believe this work can help accelerate the development of h-BN for thermal management applications.


RSC Advances ◽  
2018 ◽  
Vol 8 (45) ◽  
pp. 25835-25845 ◽  
Author(s):  
Cuiping Yu ◽  
Wenbin Gong ◽  
Jun Zhang ◽  
Weibang Lv ◽  
Wei Tian ◽  
...  

Orientational hBN/SEBS composite films embued with superior thermal conductivity and improved dimensional stability were prepared by hot-pressing treatment.


2016 ◽  
Vol 100 (2) ◽  
pp. 515-519 ◽  
Author(s):  
Ching-cheh Hung ◽  
Janet Hurst ◽  
Diana Santiago ◽  
Maricela Lizcano ◽  
Marisabel Kelly

Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 938 ◽  
Author(s):  
Weijie Liang ◽  
Xin Ge ◽  
Jianfang Ge ◽  
Tiehu Li ◽  
Tingkai Zhao ◽  
...  

The thermally conductive properties of silicone thermal grease enhanced by hexagonal boron nitride (hBN) nanosheets as a filler are relevant to the field of lightweight polymer-based thermal interface materials. However, the enhancements are restricted by the amount of hBN nanosheets added, owing to a dramatic increase in the viscosity of silicone thermal grease. To this end, a rational structural design of the filler is needed to ensure the viable development of the composite material. Using reduced graphene oxide (RGO) as substrate, three-dimensional (3D) heterostructured reduced graphene oxide-hexagonal boron nitride (RGO-hBN)-stacking material was constructed by self-assembly of hBN nanosheets on the surface of RGO with the assistance of binder for silicone thermal grease. Compared with hBN nanosheets, 3D RGO-hBN more effectively improves the thermally conductive properties of silicone thermal grease, which is attributed to the introduction of graphene and its phonon-matching structural characteristics. RGO-hBN/silicone thermal grease with lower viscosity exhibits higher thermal conductivity, lower thermal resistance and better thermal management capability than those of hBN/silicone thermal grease at the same filler content. It is feasible to develop polymer-based thermal interface materials with good thermal transport performance for heat removal of modern electronics utilising graphene-supported hBN as the filler at low loading levels.


2019 ◽  
Vol 175 ◽  
pp. 85-91 ◽  
Author(s):  
Meiyan Lin ◽  
Yinghui Li ◽  
Ke Xu ◽  
Yanghao Ou ◽  
Lingfeng Su ◽  
...  

Ionics ◽  
2015 ◽  
Vol 21 (10) ◽  
pp. 2871-2878 ◽  
Author(s):  
Mehmet Sirin Tutgun ◽  
Deniz Sinirlioglu ◽  
Sevim Unugur Celik ◽  
Ayhan Bozkurt

Sign in / Sign up

Export Citation Format

Share Document