Thermally conductive nanostructured, aramid dielectric composite films with boron nitride nanosheets

2019 ◽  
Vol 175 ◽  
pp. 85-91 ◽  
Author(s):  
Meiyan Lin ◽  
Yinghui Li ◽  
Ke Xu ◽  
Yanghao Ou ◽  
Lingfeng Su ◽  
...  
Nanoscale ◽  
2015 ◽  
Vol 7 (15) ◽  
pp. 6774-6781 ◽  
Author(s):  
Xiaoliang Zeng ◽  
Lei Ye ◽  
Shuhui Yu ◽  
Hao Li ◽  
Rong Sun ◽  
...  

Artificial nacre-like papers with excellent mechanical and thermally conductive properties were fabricated via self-assembly of functionalized boron nitride nanosheets and poly(vinyl alcohol).


2010 ◽  
Vol 20 (14) ◽  
pp. 2749 ◽  
Author(s):  
Kimiyasu Sato ◽  
Hitomi Horibe ◽  
Takashi Shirai ◽  
Yuji Hotta ◽  
Hiromi Nakano ◽  
...  

RSC Advances ◽  
2017 ◽  
Vol 7 (69) ◽  
pp. 43380-43389 ◽  
Author(s):  
Feng Yuan ◽  
Weicheng Jiao ◽  
Fan Yang ◽  
Wenbo Liu ◽  
Zhonghai Xu ◽  
...  

The highly ordered thermoplastic polyurethane elastomer (TPU)/BNNSs composites are successfully prepared by the combination of filler modification and magnetic alignment.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 379
Author(s):  
Seonmin Lee ◽  
Jooheon Kim

Aggregated boron nitride (ABN) is advantageous for increasing the packing and thermal conductivity of the matrix in composite materials, but can deteriorate the mechanical properties by breaking during processing. In addition, there are few studies on the use of Ti3C2 MXene as thermally conductive fillers. Herein, the development of a novel composite film is described. It incorporates MXene and ABN into poly(vinyl alcohol) (PVA) to achieve a high thermal conductivity. Polysilazane (PSZ)-coated ABN formed a heat conduction path in the composite film, and MXene supported it to further improve the thermal conductivity. The prepared polymer composite film is shown to provide through-plane and in-plane thermal conductivities of 1.51 and 4.28 W/mK at total filler contents of 44 wt.%. The composite film is also shown to exhibit a tensile strength of 11.96 MPa, which is much greater than that without MXene. Thus, it demonstrates that incorporating MXene as a thermally conductive filler can enhance the thermal and mechanical properties of composite films.


Author(s):  
Xuran Xu ◽  
Yichuan Su ◽  
Yongzheng Zhang ◽  
Shuaining Wu ◽  
Kai Wu ◽  
...  

The highly thermo-conductive but electrically insulating film, with desirable mechanical performances, is extremely demanded for thermal management of portable and wearable electronics. The integration of boron nitride nanosheets (BNNSs) with regenerated cellulose (RC) is a sustainable strategy to satisfy these requirements, while its practical application is still restricted by the brittle fracture and loss of toughness of the composite films especially at the high BNNS addition. Herein, a dual-crosslinked strategy accompanied with uniaxial pre-stretching treatment was introduced to engineer the artificial RC/BNNS film, in which partial chemical bonding interactions enable the effective interfiber slippage and prevent any mechanical fracture, while non-covalent hydrogen bonding interactions serve as the sacrifice bonds to dissipate the stress energy, resulting in a simultaneous high mechanical strength (103.4 MPa) and toughness (10.2 MJ/m3) at the BNNS content of 45 wt%. More importantly, attributed to the highly anisotropic configuration of BNNS, the RC/BNNS composite film also behaves as an extraordinary in-plane thermal conductivity of 15.2 W/m·K. Along with additional favorable water resistance and bending tolerance, this tactfully engineered film ensures promised applications for heat dissipation in powerful electronic devices.


Sign in / Sign up

Export Citation Format

Share Document