Polymer films prepared using ionically crosslinked soft core–shell nanoparticles: a new class of nanostructured ionomers

Soft Matter ◽  
2011 ◽  
Vol 7 (1) ◽  
pp. 247-257 ◽  
Author(s):  
Orawan Pinprayoon ◽  
Robert Groves ◽  
Peter A. Lovell ◽  
Somjit Tungchaiwattana ◽  
Brian R. Saunders
2006 ◽  
Vol 128 (19) ◽  
pp. 6447-6453 ◽  
Author(s):  
Qisheng Huo ◽  
Jun Liu ◽  
Li-Qiong Wang ◽  
Yingbing Jiang ◽  
Timothy N. Lambert ◽  
...  

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 262
Author(s):  
Venkatesha Narayanaswamy ◽  
Imaddin A. Al-Omari ◽  
Aleksandr S. Kamzin ◽  
Bashar Issa ◽  
Ihab M. Obaidat

Magnetically hard–soft core-shell ferrite nanoparticles are synthesized using an organometallic decomposition method through seed-mediated growth. Two sets of core-shell nanoparticles (S1 and S2) with different shell (Fe3O4) thicknesses and similar core (CoFe2O4) sizes are obtained by varying the initial quantities of seed nanoparticles of size 6.0 ± 1.0 nm. The nanoparticles synthesized have average sizes of 9.5 ± 1.1 (S1) and 12.2 ± 1.7 (S2) nm with corresponding shell thicknesses of 3.5 and 6.1 nm. Magnetic properties are investigated under field-cooled and zero-field-cooled conditions at several temperatures and field cooling values. Magnetic heating efficiency for magnetic hyperthermia applications is investigated by measuring the specific absorption rate (SAR) in alternating magnetic fields at several field strengths and frequencies. The exchange bias is found to have a nonmonotonic and oscillatory relationship with temperature at all fields. SAR values of both core-shell samples are found to be considerably larger than that of the single-phase bare core particles. The effective anisotropy and SAR values are found to be larger in S2 than those in S1. However, the saturation magnetization displays the opposite behavior. These results are attributed to the occurrence of spin-glass regions at the core-shell interface of different amounts in the two samples. The novel outcome is that the interfacial exchange anisotropy of core-shell nanoparticles can be tailored to produce large effective magnetic anisotropy and thus large SAR values.


2012 ◽  
Vol 27 (1) ◽  
pp. 95-101
Author(s):  
Shi-Bin LIU ◽  
Chun-Ying YANG ◽  
Zhong-Lin ZHANG ◽  
Dong-Hong DUAN ◽  
Xiao-Gang HAO ◽  
...  

2013 ◽  
Vol 20 (28) ◽  
pp. 3488-3499 ◽  
Author(s):  
Yon Jung ◽  
Hwanbum Lee ◽  
Jae Kim ◽  
Eun Koo ◽  
Keun Oh ◽  
...  

2021 ◽  
Vol 330 ◽  
pp. 129364
Author(s):  
Jinhua Wang ◽  
Jiamin Wu ◽  
Yuping Zhang ◽  
Xia Zhou ◽  
Ziwei Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document