Simultaneous proton transfers coupled with heavy atom motion in the transition state of the 2-pyridone-catalysed mutarotation of tetramethylglucose. Primary and secondry deuterium isotope effects

Author(s):  
Kjell-�ke Engdahl ◽  
H�kan Bivehed ◽  
Per Ahlberg ◽  
William H. Saunders
1966 ◽  
Vol 21 (9) ◽  
pp. 1377-1384
Author(s):  
A. V. Willi

Kinetic carbon-13 and deuterium isotope effects are calculated for the SN2 reaction of CH3I with CN-. The normal vibrational frequencies of CH3I, the transition state I · · · CH3 · · · CN, and the corresponding isotope substituted reactants and transition states are evaluated from the force constants by solving the secular equation on an IBM 7094 computer.Values for 7 force constants of the planar CH3 moiety in the transition state (with an sp2 C atom) are obtained by comparison with suitable stable molecules. The stretching force constants related to the bonds being broken or newly formed (fCC, fCC and the interaction between these two stretches, /12) are chosen in such a way that either a zero or imaginary value for νʟ≠ will result. Agreement between calculated and experimental methyl-C13 isotope effects (k12/ k13) can be obtained only in sample calculations with sufficiently large values of f12 which lead to imaginary νʟ≠ values. Furthermore, the difference between fCI and fCC must be small (in the order of 1 mdyn/Å). The bending force constants, fHCI and fHCC, exert relatively little influence on k12/k13. They are important for the D isotope effect, however. As soon as experimental data on kH/kD are available it will be possible to derive a value for fHCC in the transition state if fHCI is kept constant at 0.205 mdynA, and if fCI, fCC and f12 are held in a reasonable order of magnitude. There is no agreement between experimental and calculated cyanide-C13 isotope effects. Possible explanations are discussed. — Since fCI and fCC cannot differ much it must be concluded that the transition state is relatively “symmetric”, with approximately equal amounts of bond making and bond breaking.


1987 ◽  
Vol 65 (12) ◽  
pp. 2707-2712 ◽  
Author(s):  
Roderick E. Wasylishen ◽  
Neil Burford

Deuterium isotope effects on the 31P shielding constants and spin–spin coupling constants in the isoelectronic series, PH2−, PH3, PH4+, are examined. Also, deuterium isotope effects on the nuclear magnetic resonance parameters of SnH3− are examined and compared with our earlier results on SnH4 and SnH3+. The experimental results are analyzed using the models of Jameson and Osten. In each isoelectronic series it is found that the isotope effects on the heavy atom chemical shifts are largest for the negatively charged ions and essentially zero for the positively charged ions, as predicted by recent molecular orbital calculations. The primary isotope effects on J(A,H) are positive for all species containing lone-pair electrons, otherwise Δp1J(A,H) is negative. The primary and secondary isotope effects on J(Sn,H) in the SnH3− ion are the largest reported to date.


1972 ◽  
Vol 50 (7) ◽  
pp. 982-985 ◽  
Author(s):  
K. T. Leffek ◽  
A. F. Matheson

Secondary kinetic deuterium isotope effects are presented for the reaction of methyl-d3 iodide and pyridine in four different solvents. Calculations on mass and moment of inertia change with deuteration in the initial state and an assumed tetrahedral transition state, together with internal rotational effects, are used to rationalize the inverse isotope effects. It is concluded from the variation of the isotopic rate ratio, that the transition state structure varies with solvent.


1983 ◽  
Vol 36 (8) ◽  
pp. 1503
Author(s):  
DJ McLennan

Model calculations of primary and secondary deuterium isotope effects for the hydroxide-induced deprotonation of 2-nitropropane are reported. Various transition-state models have been examined in an effort to reproduce experimental results. A purely pyramidal transition state in which proton transfer has run far ahead of carbon rehybridization and charge delocalization is a successful model as far as isotope effects are concerned, but may fail on other counts. Three incipient trigonal models for the transition state have been tested, and, although none can be firmly eliminated by the resultant isotope effects, those involving the proton transfer's running ahead of electron delocalization and perhaps carbon rehybridization are favoured.


Sign in / Sign up

Export Citation Format

Share Document