Controlled electrochemical intercalation, exfoliation and in situ nitrogen doping of graphite in nitrate-based protic ionic liquids

2013 ◽  
Vol 15 (46) ◽  
pp. 20005 ◽  
Author(s):  
Xunyu Lu ◽  
Chuan Zhao
2019 ◽  
Vol 33 (7) ◽  
pp. 463-469 ◽  
Author(s):  
Hirokazu Munakata ◽  
Takamitsu Tashita ◽  
Masaki Haibara ◽  
Kiyoshi Kanamura

2021 ◽  
Vol 125 (5) ◽  
pp. 1416-1428
Author(s):  
Jing Ma ◽  
Yutong Wang ◽  
Xueqing Yang ◽  
Mingxuan Zhu ◽  
Baohe Wang

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4158
Author(s):  
Patrycja Glińska ◽  
Andrzej Wolan ◽  
Wojciech Kujawski ◽  
Edyta Rynkowska ◽  
Joanna Kujawa

There has been an ongoing need to develop polymer materials with increased performance as proton exchange membranes (PEMs) for middle- and high-temperature fuel cells. Poly(vinyl alcohol) (PVA) is a highly hydrophilic and chemically stable polymer bearing hydroxyl groups, which can be further altered. Protic ionic liquids (proticILs) have been found to be an effective modifying polymer agent used as a proton carrier providing PEMs’ desirable proton conductivity at high temperatures and under anhydrous conditions. In this study, the novel synthesis route of PVA grafted with fluorinated protic ionic liquids bearing sulfo groups (–SO3H) was elaborated. The polymer functionalization with fluorinated proticILs was achieved by the following approaches: (i) the PVA acylation and subsequent reaction with fluorinated sultones and (ii) free-radical polymerization reaction of vinyl acetate derivatives modified with 1-methylimidazole and sultones. These modifications resulted in the PVA being chemically modified with ionic liquids of protic character. The successfully grafted PVA has been characterized using 1H, 19F, and 13C-NMR and FTIR-ATR. The presented synthesis route is a novel approach to PVA functionalization with imidazole-based fluorinated ionic liquids with sulfo groups.


2021 ◽  
pp. 113036
Author(s):  
Emanuel A. Crespo ◽  
Liliana P. Silva ◽  
Cristina I.P. Correia ◽  
Mónia A.R. Martins ◽  
Ramesh L. Gardas ◽  
...  

2021 ◽  
Vol 23 (4) ◽  
pp. 2663-2675
Author(s):  
Viviane Overbeck ◽  
Henning Schröder ◽  
Anne-Marie Bonsa ◽  
Klaus Neymeyr ◽  
Ralf Ludwig

NMR Fast-Field-Cycling (FFC) relaxometry provides important information about translational and rotational dynamics of hydrogen bonded protic ionic liquids (PILs). 


2020 ◽  
Vol 7 (16) ◽  
pp. 2969-2978
Author(s):  
Jie-hao Li ◽  
Jie Ren ◽  
Ying Liu ◽  
Hui-ying Mu ◽  
Rui-hong Liu ◽  
...  

Cl-Doped Bi2O2CO3 is prepared using ionic liquids as dopants and the oxygen-vacancy-induced photocatalytic mechanism is revealed.


Sign in / Sign up

Export Citation Format

Share Document