scholarly journals Photodissociation mass spectrometry: new tools for characterization of biological molecules

2014 ◽  
Vol 43 (8) ◽  
pp. 2757-2783 ◽  
Author(s):  
Jennifer S. Brodbelt

Fragmentation of gas-phase ions by absorption of photons affords a versatile means to characterize the structures and sequences of biological molecules.

2012 ◽  
Vol 2012 ◽  
pp. 1-40 ◽  
Author(s):  
Shibdas Banerjee ◽  
Shyamalava Mazumdar

The Electrospray Ionization (ESI) is a soft ionization technique extensively used for production of gas phase ions (without fragmentation) of thermally labile large supramolecules. In the present review we have described the development of Electrospray Ionization mass spectrometry (ESI-MS) during the last 25 years in the study of various properties of different types of biological molecules. There have been extensive studies on the mechanism of formation of charged gaseous species by the ESI. Several groups have investigated the origin and implications of the multiple charge states of proteins observed in the ESI-mass spectra of the proteins. The charged analytes produced by ESI can be fragmented by activating them in the gas-phase, and thus tandem mass spectrometry has been developed, which provides very important insights on the structural properties of the molecule. The review will highlight recent developments and emerging directions in this fascinating area of research.


2021 ◽  
Vol 14 (6) ◽  
pp. 498
Author(s):  
Evolène Deslignière ◽  
Anthony Ehkirch ◽  
Bastiaan L. Duivelshof ◽  
Hanna Toftevall ◽  
Jonathan Sjögren ◽  
...  

Antibody-drug conjugates (ADCs) are biotherapeutics consisting of a tumor-targeting monoclonal antibody (mAb) linked covalently to a cytotoxic drug. Early generation ADCs were predominantly obtained through non-selective conjugation methods based on lysine and cysteine residues, resulting in heterogeneous populations with varying drug-to-antibody ratios (DAR). Site-specific conjugation is one of the current challenges in ADC development, allowing for controlled conjugation and production of homogeneous ADCs. We report here the characterization of a site-specific DAR2 ADC generated with the GlyCLICK three-step process, which involves glycan-based enzymatic remodeling and click chemistry, using state-of-the-art native mass spectrometry (nMS) methods. The conjugation process was monitored with size exclusion chromatography coupled to nMS (SEC-nMS), which offered a straightforward identification and quantification of all reaction products, providing a direct snapshot of the ADC homogeneity. Benefits of SEC-nMS were further demonstrated for forced degradation studies, for which fragments generated upon thermal stress were clearly identified, with no deconjugation of the drug linker observed for the T-GlyGLICK-DM1 ADC. Lastly, innovative ion mobility-based collision-induced unfolding (CIU) approaches were used to assess the gas-phase behavior of compounds along the conjugation process, highlighting an increased resistance of the mAb against gas-phase unfolding upon drug conjugation. Altogether, these state-of-the-art nMS methods represent innovative approaches to investigate drug loading and distribution of last generation ADCs, their evolution during the bioconjugation process and their impact on gas-phase stabilities. We envision nMS and CIU methods to improve the conformational characterization of next generation-empowered mAb-derived products such as engineered nanobodies, bispecific ADCs or immunocytokines.


2015 ◽  
Vol 6 (2) ◽  
pp. 1324-1333 ◽  
Author(s):  
Michael B. Cammarata ◽  
Jennifer S. Brodbelt

193 nm UV photodissociation of myoglobin in the gas phase showed preferential backbone cleavages in regions with higher relative B-factors.


2017 ◽  
Vol 23 (6) ◽  
pp. 445-459 ◽  
Author(s):  
Yelena Yefremova ◽  
Bright D Danquah ◽  
Kwabena FM Opuni ◽  
Reham El-Kased ◽  
Cornelia Koy ◽  
...  

Proteins are essential for almost all physiological processes of life. They serve a myriad of functions which are as varied as their unique amino acid sequences and their corresponding three-dimensional structures. To fulfill their tasks, most proteins depend on stable physical associations, in the form of protein complexes that evolved between themselves and other proteins. In solution (condensed phase), proteins and/or protein complexes are in constant energy exchange with the surrounding solvent. Albeit methods to describe in-solution thermodynamic properties of proteins and of protein complexes are well established and broadly applied, they do not provide a broad enough access to life-science experimentalists to study all their proteins' properties at leisure. This leaves great desire to add novel methods to the analytical biochemist's toolbox. The development of electrospray ionization created the opportunity to characterize protein higher order structures and protein complexes rather elegantly by simultaneously lessening the need of sophisticated sample preparation steps. Electrospray mass spectrometry enabled us to translate proteins and protein complexes very efficiently into the gas phase under mild conditions, retaining both, intact protein complexes, and gross protein structures upon phase transition. Moreover, in the environment of the mass spectrometer (gas phase, in vacuo), analyte molecules are free of interactions with surrounding solvent molecules and, therefore, the energy of inter- and intramolecular forces can be studied independently from interference of the solvating environment. Provided that gas phase methods can give information which is relevant for understanding in-solution processes, gas phase protein structure studies and/or investigations on the characterization of protein complexes has rapidly gained more and more attention from the bioanalytical scientific community. Recent reports have shown that electrospray mass spectrometry provides direct access to six prime protein complex properties: stabilities, compositions, binding surfaces (epitopes), disassembly processes, stoichiometries, and thermodynamic parameters.


Sign in / Sign up

Export Citation Format

Share Document