scholarly journals State-of-the-Art Native Mass Spectrometry and Ion Mobility Methods to Monitor Homogeneous Site-Specific Antibody-Drug Conjugates Synthesis

2021 ◽  
Vol 14 (6) ◽  
pp. 498
Author(s):  
Evolène Deslignière ◽  
Anthony Ehkirch ◽  
Bastiaan L. Duivelshof ◽  
Hanna Toftevall ◽  
Jonathan Sjögren ◽  
...  

Antibody-drug conjugates (ADCs) are biotherapeutics consisting of a tumor-targeting monoclonal antibody (mAb) linked covalently to a cytotoxic drug. Early generation ADCs were predominantly obtained through non-selective conjugation methods based on lysine and cysteine residues, resulting in heterogeneous populations with varying drug-to-antibody ratios (DAR). Site-specific conjugation is one of the current challenges in ADC development, allowing for controlled conjugation and production of homogeneous ADCs. We report here the characterization of a site-specific DAR2 ADC generated with the GlyCLICK three-step process, which involves glycan-based enzymatic remodeling and click chemistry, using state-of-the-art native mass spectrometry (nMS) methods. The conjugation process was monitored with size exclusion chromatography coupled to nMS (SEC-nMS), which offered a straightforward identification and quantification of all reaction products, providing a direct snapshot of the ADC homogeneity. Benefits of SEC-nMS were further demonstrated for forced degradation studies, for which fragments generated upon thermal stress were clearly identified, with no deconjugation of the drug linker observed for the T-GlyGLICK-DM1 ADC. Lastly, innovative ion mobility-based collision-induced unfolding (CIU) approaches were used to assess the gas-phase behavior of compounds along the conjugation process, highlighting an increased resistance of the mAb against gas-phase unfolding upon drug conjugation. Altogether, these state-of-the-art nMS methods represent innovative approaches to investigate drug loading and distribution of last generation ADCs, their evolution during the bioconjugation process and their impact on gas-phase stabilities. We envision nMS and CIU methods to improve the conformational characterization of next generation-empowered mAb-derived products such as engineered nanobodies, bispecific ADCs or immunocytokines.

mAbs ◽  
2017 ◽  
Vol 9 (5) ◽  
pp. 801-811 ◽  
Author(s):  
Thomas Botzanowski ◽  
Stéphane Erb ◽  
Oscar Hernandez-Alba ◽  
Anthony Ehkirch ◽  
Olivier Colas ◽  
...  

2015 ◽  
Vol 24 (8) ◽  
pp. 1210-1223 ◽  
Author(s):  
Julien Marcoux ◽  
Thierry Champion ◽  
Olivier Colas ◽  
Elsa Wagner-Rousset ◽  
Nathalie Corvaïa ◽  
...  

2019 ◽  
Vol 411 (12) ◽  
pp. 2569-2576 ◽  
Author(s):  
Malin Källsten ◽  
Matthijs Pijnappel ◽  
Rafael Hartmann ◽  
Fredrik Lehmann ◽  
Lucia Kovac ◽  
...  

2020 ◽  
Vol 20 ◽  
Author(s):  
Bryan Fonslow ◽  
Gabor Jarvas ◽  
Marton Szigeti ◽  
Andras Guttman

Aims: Demonstrating the capabilities of our new capillary electrophoresis – mass spectrometry method, which facilitates highly accurate relative quantitation of modification site occupancy of antibody-ligand (e.g., antibody-drug) conjugates. Background: Antibody-drug conjugates play important roles in medical discovery for imaging and therapeutic intervention. The localization and stoichiometry of the conjugation can affect the orientation, selectivity, specificity, and strength of molecular interactions, influencing biochemical function. Objective: To demonstrate the option to analyze the localization and stoichiometry of antibody-ligand conjugates by using essentially the same method at all levels including ligand infusion, peptide mapping, as well as reduced and intact protein analysis. Materials and Methods: Capillary electrophoresis coupled to electrospray ionization mass spectrometry was used to analyze the antibodyligand conjugates. Results: We identified three prevalent ligand conjugation sites with estimated stoichiometries of 73, 14, and 6% and an average ligand-antibody ratio of 1.37, illustrating the capabilities of CE-ESI-MS for rapid and efficient characterization of antibody-drug conjugates. Conclusion: The developed multilevel analytical method offers a comprehensive way to determine the localization and stoichiometry of antibody-drug conjugates for molecular medicinal applications. In addition, a significant advantage of the reported approach is that small, hydrophilic, unmodified peptides well separated from the neutrals, which is not common with other liquid phase separation methods such as LC.


2020 ◽  
Author(s):  
Nuwani W. Weerasinghe ◽  
Yeganeh Habibi ◽  
Kevin A. Uggowitzer ◽  
Christopher J. Thibodeaux

AbstractLanthipeptides are ribosomally-synthesized and post-translationally modified peptide (RiPP) natural products that are biosynthesized in a multistep maturation process by enzymes (lanthipeptide synthetases) that possess relaxed substrate specificity. Recent evidence has suggested that some lanthipeptide synthetases are structurally dynamic enzymes that are allosterically activated by precursor peptide binding, and that conformational sampling of the enzyme-peptide complex may play an important role in defining the efficiency and sequence of biosynthetic events. These “biophysical” processes, while critical for defining the activity and function of the synthetase, remain very challenging to study with existing methodologies. Herein, we show that native nanoelectrospray ionization coupled to ion mobility mass spectrometry (nanoESI-IM-MS) provides a powerful and sensitive means for investigating the conformational landscapes and intermolecular interactions of lanthipeptide synthetases. Namely, we demonstrate that the class II lanthipeptide synthetase (HalM2) and its non-covalent complex with the cognate HalA2 precursor peptide can be delivered into the gas phase in a manner that preserves native structures and intermolecular enzyme-peptide contacts. Moreover, gas phase ion mobility studies of the natively-folded ions demonstrate that peptide binding and mutations to dynamic structural elements of HalM2 alter the conformational landscape of the enzyme, and that the precursor peptide itself exhibits higher order structure in the mass spectrometer. Cumulatively, these data support previous claims that lanthipeptide synthetases are structurally dynamic enzymes that undergo functionally relevant conformational changes in response to precursor peptide binding. This work establishes nanoESI-IM-MS as a versatile approach for unraveling the relationships between protein structure and biochemical function in RiPP biosynthetic systems.


2016 ◽  
Vol 13 (2) ◽  
pp. 157-183 ◽  
Author(s):  
Alain Beck ◽  
Guillaume Terral ◽  
François Debaene ◽  
Elsa Wagner-Rousset ◽  
Julien Marcoux ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document