Biocatalytic approach on the treatment of edible oil refinery wastewater

RSC Advances ◽  
2014 ◽  
Vol 4 (21) ◽  
pp. 10680 ◽  
Author(s):  
P. Saranya ◽  
K. Ramani ◽  
G. Sekaran
2021 ◽  
Vol 117 (11/12) ◽  
Author(s):  
Eki T. Aisien ◽  
Felix A. Aisien

Edible oil refinery wastewater (EORW) is one source of environmental pollution in Nigeria. The treatment of EORW before discharge into the environment remains a significant challenge in the edible oil refinery industries. This research was aimed at photocatalytic treatment of EORW using a batch photocatalytic reactor with titanium dioxide photocatalyst. We investigated the physicochemical parameters: chemical oxygen demand (COD), biological oxygen demand (BOD5), oil and grease, phenol, chloride (Cl-), total suspended solids, sulfate (SO42-), and phosphate (PO43-) using American Public Health Association methods. The results showed that the reduction efficiency of the treated EORW with TiO2 catalyst ranged between 65.8% (PO43-) and 87.0% (COD), and the improvement in efficiency was 54.1% (pH) and 60.8% dissolved oxygen. However, the results showed no significant difference (p<0.05) in the control treatment without catalyst. The biodegradability of EORW increased from 0.196 to 0.32. It was observed that the optimum values were an initial EORW concentration of 100 mL/L, irradiation time of 90min, catalyst dose of 1.25 g/L, and an agitation speed of 900 rpm. The kinetics of the photodegradation process was well described by the pseudo-first-order equation (R2>0.96) and pseudo-second-order equation (R2>0.98). The intra-particle diffusion model fairly represented the diffusion mechanism with an R2 value of 0.806. The treated EORW met the most acceptable water quality standards for discharged effluent according to the maximum permissible limits of the Nigerian National Environmental Standards and Regulations Enforcement Agency.


2018 ◽  
Vol 8 (3) ◽  
pp. 438 ◽  
Author(s):  
Hasna Addi ◽  
Francisco Mateo-Ramírez ◽  
Víctor Ortiz-Martínez ◽  
María Salar-García ◽  
Francisco Hernández-Fernández ◽  
...  

1986 ◽  
Vol 18 (9) ◽  
pp. 105-114 ◽  
Author(s):  
D. Misković ◽  
B. Dalmacija ◽  
Ž Živanov ◽  
E. Karlović ◽  
Z. Hain ◽  
...  

The objective of the present investigation was a high level of purification of the wastewater from an oil refinery achieved by using some improved methods yielding an effluent suitable for recycling into the process. All the investigations were carried out on a continuous laboratory pilot system consisting of the following units: dissolved air flotation (DAF), sedimentation, double-stage microbiological reactor, and adsorption columns filled with granular biologically activated carbon (GBAC). A high degree of COD reduction close to 100% (precisely, 99.95 %), as well as removal of nitrogen compounds of 72% was achieved during a relatively short retention time within the range of 15-16.5 hrs. The DAF technique combined with gravitational separation was used to achieve the recovery of free oil matter up to 98%, without any preliminary conditioning. After the sedimentation of coagulated and flocculated dispersed oils, the microbiological oxidation of dissolved matter was accomplished by using two kinds of activated sludge for easy and hard degradable organics. Using the continuously bioregenerating GBAC, an effluent having a lowered COD value to about 9 was obtained. At the same time, the denitrification process took place. According to the obtained results the treated oil refinery wastewater can be recycled into the process, or discharged into a water recipient of a low self-purifying capacity.


2018 ◽  
Vol 78 (5) ◽  
pp. 1159-1167 ◽  
Author(s):  
Behnam Heidari ◽  
Mohsen Soleimani ◽  
Nourollah Mirghaffari

Abstract The Fenton process is a useful and inexpensive type of advanced oxidation process for industrial wastewater treatment. This study was performed with the aim of using the steel slag as a catalyst in the heterogeneous Fenton process in order to reduce the chemical oxygen demand (COD) of oil refinery wastewater. The effects of various parameters including the reaction time (0.5, 1.0, 2.0, 3.0 and 4.0 h), pH (2.0, 3.0, 4.0, 5.0, 6.0 and 7.0), the concentration of steel slag (12.5, 25.0 and 37.5 g/L), and H2O2 concentration (100, 250, 400 and 500 mg/L) on the Fenton process were investigated. Furthermore, the effect of microwave irradiation on the process efficiency was studied by considering the optimum conditions of the mentioned parameters. The results showed that using 25.0 g/L of steel slag and 250 mg/L H2O2, at pH = 3.0, could reduce COD by up to 64% after 2.0 h. Also, microwave irradiation decreased the time of the process from 120 min to 25 min in the optimum conditions, but it consumed a high amount of energy. It could be concluded that steel slags had a high potential in the treatment of oil refinery wastewater through the Fenton process.


Sign in / Sign up

Export Citation Format

Share Document