Electrostatic or steric? – preparations and characterizations of well-dispersed systems containing rod-like nanowhiskers of crystalline polysaccharides

Soft Matter ◽  
2013 ◽  
Vol 9 (16) ◽  
pp. 4125 ◽  
Author(s):  
Jun Araki
Keyword(s):  
Author(s):  
Lyudmila P. SEMIKHINA ◽  
Daniil D. Korovin

A Brookfield DV-II + Pro rotational viscometer was used to study the viscosity of 7 samples of concentrated nanodispersed systems (nanofluids) with a similar viscosity (6-22 mPa ∙ s), the particles of the dispersed phase in which are nanosized surfactant micelles and conglomerates from them. It was found that for 5 out of 7 studied reagents, there is a decrease in viscosity typical for dispersed systems with an increase in the shear rate, and their flow curves, that is, the dependence of the shear stress on the shear rate, correspond to the ideal plastic flow of non-Newtonian fluids. Moreover, with high reliability, R2 ≥ 0.999 is described by the Bingham equation with a small value of the limiting shear stress (less than 0.2 Pa). It is shown that all the studied reagents are also characterized by an increase in the activation energy of a viscous flow Е with an increase in the shear rate. As a result, a decrease in viscosity with an increase in shear rate, typical for disperse systems, including nanofluids, is provided by a more significant increase in entropy changes ΔS compared to Е. It has been substantiated that, depending on the ratio between the activation energy of viscous flow Е and the change in entropy ΔS, the viscosity of concentrated micellar dispersed systems with an increase in the shear rate can decrease, remain unchanged, and increase. The last two cases, not typical for disperse systems and nanofluids, were identified and studied using the example of two demulsifiers, RIK-1 and RIK-2, with a maximum of a very narrow particle size distribution at 160 ± 5 nm, corresponding to the size of a special type of very stable micelles Surfactant — vesicle.


Sign in / Sign up

Export Citation Format

Share Document