High efficiency yellow organic light emitting diodes with a balanced carrier injection co-host structure

2013 ◽  
Vol 1 (33) ◽  
pp. 5110 ◽  
Author(s):  
Jwo-Huei Jou ◽  
Hui-Huan Yu ◽  
You-Xing Lin ◽  
Jing-Ru Tseng ◽  
Shiang-Hau Peng ◽  
...  
Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2029
Author(s):  
Tianyu Zhang ◽  
Asu Li ◽  
Ren Sheng ◽  
Mingyang Sun ◽  
Ping Chen

High-efficiency single-layer organic light-emitting diodes (OLEDs) based on a simple structure doped with iridium(III) bis(4-phenylthieno[3,2-c]pyridinato-N,C2′) acetylacetonate (PO-01) as emission dyes are realized, achieving maximum current efficiency (CE) and power efficiency (PE) of 37.1 cd A−1 and 33.3 lm W−1 as well as low turn-on voltage of 3.31 V. Such superior performance is mainly attributed to the employment of a uniform co-host structure and assisted charge transport property of phosphors dyes, which were in favor of the balance of charge carrier injection and transport in the single emitting layer (EML). Moreover, systematic researches on the position of exciton recombination region and the dopant effect on charge carriers were subsequently performed to better understand the operational mechanism. It could be experimentally found that the orange emitting dopants promoted the acceleration of the charge carriers transport and raised the exciton recombination efficiency, eventually leading to an excellent performance of single-layer OLEDs.


2005 ◽  
Vol 44 (1A) ◽  
pp. 410-411 ◽  
Author(s):  
Masafumi Yoshida ◽  
Teppei Tsuchida ◽  
Takaaki Kurata ◽  
Masaaki Ikeda ◽  
Hiroyuki Sasabe ◽  
...  

2021 ◽  
Vol 15 (3) ◽  
pp. 208-215 ◽  
Author(s):  
Soon Ok Jeon ◽  
Kyung Hyung Lee ◽  
Jong Soo Kim ◽  
Soo-Ghang Ihn ◽  
Yeon Sook Chung ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maria Vasilopoulou ◽  
Abd. Rashid bin Mohd Yusoff ◽  
Matyas Daboczi ◽  
Julio Conforto ◽  
Anderson Emanuel Ximim Gavim ◽  
...  

AbstractBlue organic light-emitting diodes require high triplet interlayer materials, which induce large energetic barriers at the interfaces resulting in high device voltages and reduced efficiencies. Here, we alleviate this issue by designing a low triplet energy hole transporting interlayer with high mobility, combined with an interface exciplex that confines excitons at the emissive layer/electron transporting material interface. As a result, blue thermally activated delay fluorescent organic light-emitting diodes with a below-bandgap turn-on voltage of 2.5 V and an external quantum efficiency (EQE) of 41.2% were successfully fabricated. These devices also showed suppressed efficiency roll-off maintaining an EQE of 34.8% at 1000 cd m−2. Our approach paves the way for further progress through exploring alternative device engineering approaches instead of only focusing on the demanding synthesis of organic compounds with complex structures.


2011 ◽  
Vol 12 (5) ◽  
pp. 843-850 ◽  
Author(s):  
Chao Cai ◽  
Shi-Jian Su ◽  
Takayuki Chiba ◽  
Hisahiro Sasabe ◽  
Yong-Jin Pu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document