A terminal protection system for the detection of adenosine triphosphate via enzyme-assisted signal amplification

2015 ◽  
Vol 7 (3) ◽  
pp. 970-975 ◽  
Author(s):  
Zhongjie Li ◽  
Yang Song ◽  
Wenhui Zhu ◽  
Le Deng

A low-background fluorescence biosensor was developed for the detection of adenosine triphosphate (ATP) making use of terminal protection from exonuclease I, and exonuclease III-catalyzed target recycling amplification.

2014 ◽  
Vol 6 (15) ◽  
pp. 6082-6087 ◽  
Author(s):  
Hui Ma ◽  
Wei Wei ◽  
Qian Lu ◽  
Zhixin Zhou ◽  
Henan Li ◽  
...  

A label-free DNA biosensor with high sensitivity and selectivity is constructed by using DNA–Ag NCs and Exo III-catalyzed target recycling amplification.


The Analyst ◽  
2018 ◽  
Vol 143 (23) ◽  
pp. 5771-5778 ◽  
Author(s):  
Xiaolei Song ◽  
Yu Wang ◽  
Su Liu ◽  
Xue Zhang ◽  
Haiwang Wang ◽  
...  

An isothermal electrochemical method for the highly sensitive detection of mercury ions (Hg2+) was established based on Hg2+-triggered exonuclease III-aided target recycling amplification.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Yubin Li ◽  
Jiaming Yuan ◽  
Zexi Xu

A C-Ag+-C structure-based fluorescence biosensor with novel combination design of exonuclease III (Exo III) dual-recycling amplification is proposed for the application of silver ions (Ag+) detection. Since oligo-1 involves C-C mismatches, the presence of Ag+ can be captured to form C-Ag+-C base pairs, which results in a double-helix structure with a blunt terminus. The double-helix structure can be cleaved by EXO III to release short mononucleotide fragments (trigger DNA) and Ag+. Released Ag+ can form new bindings with oligo-1, and other trigger DNA can be produced in the digestion cycles. Hybridization with the signal DNA (oligo-2) transforms a trigger DNA into double-stranded DNA with blunt terminus which can be cleaved by Exo III to reproduce the trigger DNA and form guanine- (G-) quadruplex DNA. The trigger DNA returns free to the solution and hybridizes with another signal DNA, which realizes the dual-recycling amplification. The G-quadruplex DNA can be reported by N-methylmesoporphyrin IX (NMM), a specific G-quadruplex DNA fluorochrome. This method allows Ag+ to be determined in the 5 to 1500 pmol/L concentration range, with a 2 pmol/L detection limit, and it has been successfully applied to the detection of Ag+ in real samples.


Sign in / Sign up

Export Citation Format

Share Document