Hybrid inorganic–organic tandem solar cells for broad absorption of the solar spectrum

2014 ◽  
Vol 16 (17) ◽  
pp. 7672-7676 ◽  
Author(s):  
M. J. Speirs ◽  
B. G. H. M. Groeneveld ◽  
L. Protesescu ◽  
C. Piliego ◽  
M. V. Kovalenko ◽  
...  

A tandem solar cell is fabricated with one PbS QD and one polymer–fullerene subcell for a broad spectral coverage. Tungsten(vi) oxide is demonstrated as an effective interlayer.

2018 ◽  
Vol 2 (6) ◽  
pp. 1141-1147 ◽  
Author(s):  
Emily L. Warren ◽  
Michael G. Deceglie ◽  
Michael Rienäcker ◽  
Robby Peibst ◽  
Adele C. Tamboli ◽  
...  

Three-terminal tandem solar cells can provide a robust operating mechanism to efficiently capture the solar spectrum without the need to current match sub-cells or fabricate complicated metal interconnects.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jaya Madan ◽  
Karanveer Singh ◽  
Rahul Pandey

AbstractThe major losses that limit the efficiency of a single-junction solar cell are thermalization loss and transmission loss. Thus, to efficiently utilize the full solar spectrum and to mitigate these losses, tandem solar cells (TSC) have significantly impacted the photovoltaic (PV) landscape. In this context, the research on perovskite/silicon tandems is currently dominating the research community. The stability improvements of perovskite materials and mature fabrication techniques of silicon have underpinned the rapid progress of perovskite/silicon TSC. However, the low absorption coefficient and high module cost of the silicon are the tailbacks for the mass production of perovskite/silicon TSCs. Therefore, PV technology demands to explore some new materials other than Si to be used as absorber layer in the bottom cell. Thus, here in this work, to mitigate the aforementioned losses and to reduce cost, a 23.36% efficient two-terminal perovskite-PbS CQD monolithic tandem solar cell has been designed through comprehensive device simulations. Before analyzing the performance of the proposed TSC, the performance of perovskite top cells has been optimized in terms of variation in optical properties, thickness, and interface defect density under standalone conditions. Thereafter, filtered spectrum and associated integrated filtered power by the top cell at different perovskite thickness from 50 to 500 nm is obtained to conceive the presence of the top cell above the bottom cell with different perovskite thickness. The current matching by concurrently varying the thickness of both the top and bottom subcell has also been done to obtain the maximum deliverable tandem JSC for the device under consideration. The top/bottom subcell with current matched JSC of 16.68 mA cm−2/16.62 mA cm−2 showed the conversion efficiency of 14.60%/9.07% under tandem configuration with an optimized thickness of 143 nm/470 nm, where the top cell is simulated under AM1.5G spectrum, and bottom cell is exposed to the spectrum filtered by 143 nm thick top cell. Further, the voltages at equal current points are added together to generate tandem J–V characteristics. This work concludes a 23.36% efficient perovskite-PbS CQD tandem design with 1.79 V (VOC), 16.67 mA cm−2 (JSC) and 78.3% (FF). The perovskite-PbS CQD tandem device proposed in this work may pave the way for the development of high-efficiency tandem solar cells for low-cost applications.


2021 ◽  
Author(s):  
Gopal Krishna Burra ◽  
Dhriti Sundar Ghosh ◽  
Sanjay Tiwari

Abstract Semi-transparent perovskite solar cells have significant potential for their use in tandem solar cells with silicon (Si) or copper indium gallium selenide (CIGS) materials. Light management and optical design are important for developing a highly efficient solar cell. Herein, numerical simulation of a perovskite/silicon tandem solar cell was performed using a Matlab analytical program. The single-diode model for a solar cell is used for simulation with ideal working conditions. The tandem solar cell is comprised of two configurations which are the thin film-based perovskite solar cell on top and a wafer-based silicon solar cell on the bottom, and the silicon sub-cell with silicon nitride (SiNx) anti-reflection coatings (ARC) in series-connected configuration. The material properties like energy bandgap, diffusion length, doping concentration are considered for calculating the device parameters. The bandgap and thickness of the perovskite material, refractive indices, photon flux, and wavelength of light are varied to calculate voltage, current, quantum efficiency, and other parameters of the tandem solar cell. The silicon sub-cell with silicon nitride (SiNx) anti-reflection coatings (ARC) in series-connected configuration decreased the reflectivity and increased the overall voltage and current of the tandem cell. The double-layer ARC films have increased the efficiency up to 1%. The efficiency of the two-terminal tandem device is found out to be over 32%. This work provides a pathway for further enhancing the power conversion efficiency of perovskite/Si tandem cells.


2019 ◽  
Vol 3 (8) ◽  
pp. 1995-2005 ◽  
Author(s):  
Eike Köhnen ◽  
Marko Jošt ◽  
Anna Belen Morales-Vilches ◽  
Philipp Tockhorn ◽  
Amran Al-Ashouri ◽  
...  

We present a highly efficient monolithic perovskite/silicon tandem solar cell and analyze the tandem performance as a function of photocurrent mismatch with important implications for future device and energy yield optimizations.


2012 ◽  
Vol 1426 ◽  
pp. 125-130
Author(s):  
Y.W. Tseng ◽  
Y.H. Lin ◽  
H.J. Hsu ◽  
C.H. Hsu ◽  
C.C. Tsai

ABSTRACTIn this work, the development of hydrogenated amorphous silicon oxide (a-SiOx:H) absorber, a-SiOx:H single-junction solar cells and a-SiOx:H/a-Si1-xGex:H tandem solar cells were presented. The oxygen content of the a-SiOx:H materials controlled by changing CO2-to-SiH4 flow ratio had significant influence on its opto-electrical property. As CO2/SiH4 increased from 0 to 2, the bandgap increased from 1.75 to 2.13 eV while the photo-conductivity decreased from 8.25×10-6 to 1.02×10-8 S/cm. Photo-response of over 105 can be obtained as the bandgap was approximately 1.90 eV. The performance of single-junction solar cells revealed a better efficiency can be obtained as the absorber bandgap was in the range of 1.83 to 1.90 eV. Further increase of the absorber bandgap may lead to the increase in bulk defect density which deteriorated the cell efficiency. Finally, a-SiOx:H/a-Si1-xGex:H tandem solar cell was fabricated with the absorber bandgap of 1.90 eV in the top cell. By matching the current between the component cells, the tandem cell efficiency of 7.38% has been achieved.


Author(s):  
Shivani Chauhan ◽  
Rachna Singh

The tandem Solar cell has high power conversion efficiency (PCE), so they are taken as the next step in photovoltaic evolution. The tandem solar cell also overcome the limitations of Single-junction solar cells by reducing thermalization losses and also reduce the fabrication cost. The fabrication of tandem solar cells is highly efficient after the origination of halide perovskite absorber material, this material will shape the future of tandem solar cells. Researchers have already shown that this material can convert light more efficiently than standalone sub cell. Today, researchers around the world are keeping the configuration of a tandem solar cell as their agenda. A Tandem solar cell is a stacking of multiple layers having different bandgaps with specific maximum absorption and width. We reviewed perovskite/silicon tandem solar cells with different sub-module configurations. Move forward, we discuss the tandem module technology, sub cell of a tandem can be wired in several ways two terminals 2T monolithic and mechanically stacked, a four-terminal 4T mechanically stacked, and three-terminal 3T monolithic stack devices. This review paper provides a side-by-side comparison of theoretical efficiencies of multijunction solar cells. The highest efficiency has been evaluated at 39.4% for a three-level structure.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
B. Zaidi ◽  
C. Shekhar ◽  
B. Hadjoudja ◽  
S. Gagui ◽  
S. Zahra ◽  
...  

AbstractThis article aims to study MoSe2/CIGS tandem solar cells employing SCAPS-1D computational package based on ant colony algorithm. The simulation of Monolithic MoSe2/CIGS tandem solar cells has been implemented successfully by employing the Matlab/Simulink. The power output of the Monolithic MoSe2/CIGS tandem modules increases by the solar irradiations during the first few days of operation. The J–V characteristic and average daily energy production throughout the year has been calculated. The results show 80.71% FF and 19.29% efficiency of the solar cell. The other parameter for the MoSe2/CIGS tandem solar cell are Voc = 0.62 V; Jsc = 38.69 mA/cm2.


2018 ◽  
Vol 11 (12) ◽  
pp. 3511-3523 ◽  
Author(s):  
Marko Jošt ◽  
Eike Köhnen ◽  
Anna Belen Morales-Vilches ◽  
Benjamin Lipovšek ◽  
Klaus Jäger ◽  
...  

25.5% efficiency is demonstrated for monolithic perovskite/silicon tandem solar cell using textured foil and the impact of texture position on performance and energy yield is simulated.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012191
Author(s):  
A B Nikolskaia ◽  
S S Kozlov ◽  
M F Vildanova ◽  
O K Karyagina ◽  
O I Shevaleevskiy

Abstract Here novel high efficient semi-transparent perovskite solar cells (PSCs) based on ZrO2 photoelectrodes were fabricated and were used as top elements in tandem systems with crystalline silicon (c-Si) solar cells in four-terminal configuration. The comparative analysis of photovoltaic parameters measured for PSCs, c-Si solar cells and PSC/c-Si tandem solar cells demonstrated that the use of ZrO2 photoelectrodes allows to improve the PSC performance and to achieve efficiencies for PSC/c-Si tandem solar cell higher than for a standalone c-Si solar cell under varying illumination conditions.


2020 ◽  
Vol 4 (2) ◽  
pp. 549-558 ◽  
Author(s):  
Manuel Schnabel ◽  
Henning Schulte-Huxel ◽  
Michael Rienäcker ◽  
Emily L. Warren ◽  
Paul F. Ndione ◽  
...  

Three-terminal tandem solar cell with conductive adhesive interconnect and back-contacted bottom cell delivers 27.3% efficiency.


Sign in / Sign up

Export Citation Format

Share Document