scholarly journals Comprehensive device simulation of 23.36% efficient two-terminal perovskite-PbS CQD tandem solar cell for low-cost applications

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jaya Madan ◽  
Karanveer Singh ◽  
Rahul Pandey

AbstractThe major losses that limit the efficiency of a single-junction solar cell are thermalization loss and transmission loss. Thus, to efficiently utilize the full solar spectrum and to mitigate these losses, tandem solar cells (TSC) have significantly impacted the photovoltaic (PV) landscape. In this context, the research on perovskite/silicon tandems is currently dominating the research community. The stability improvements of perovskite materials and mature fabrication techniques of silicon have underpinned the rapid progress of perovskite/silicon TSC. However, the low absorption coefficient and high module cost of the silicon are the tailbacks for the mass production of perovskite/silicon TSCs. Therefore, PV technology demands to explore some new materials other than Si to be used as absorber layer in the bottom cell. Thus, here in this work, to mitigate the aforementioned losses and to reduce cost, a 23.36% efficient two-terminal perovskite-PbS CQD monolithic tandem solar cell has been designed through comprehensive device simulations. Before analyzing the performance of the proposed TSC, the performance of perovskite top cells has been optimized in terms of variation in optical properties, thickness, and interface defect density under standalone conditions. Thereafter, filtered spectrum and associated integrated filtered power by the top cell at different perovskite thickness from 50 to 500 nm is obtained to conceive the presence of the top cell above the bottom cell with different perovskite thickness. The current matching by concurrently varying the thickness of both the top and bottom subcell has also been done to obtain the maximum deliverable tandem JSC for the device under consideration. The top/bottom subcell with current matched JSC of 16.68 mA cm−2/16.62 mA cm−2 showed the conversion efficiency of 14.60%/9.07% under tandem configuration with an optimized thickness of 143 nm/470 nm, where the top cell is simulated under AM1.5G spectrum, and bottom cell is exposed to the spectrum filtered by 143 nm thick top cell. Further, the voltages at equal current points are added together to generate tandem J–V characteristics. This work concludes a 23.36% efficient perovskite-PbS CQD tandem design with 1.79 V (VOC), 16.67 mA cm−2 (JSC) and 78.3% (FF). The perovskite-PbS CQD tandem device proposed in this work may pave the way for the development of high-efficiency tandem solar cells for low-cost applications.

2018 ◽  
Vol 2 (6) ◽  
pp. 1141-1147 ◽  
Author(s):  
Emily L. Warren ◽  
Michael G. Deceglie ◽  
Michael Rienäcker ◽  
Robby Peibst ◽  
Adele C. Tamboli ◽  
...  

Three-terminal tandem solar cells can provide a robust operating mechanism to efficiently capture the solar spectrum without the need to current match sub-cells or fabricate complicated metal interconnects.


1992 ◽  
Vol 258 ◽  
Author(s):  
M. Yoshimi ◽  
W. Ma ◽  
T. Horiuchi ◽  
C. C. Lim ◽  
S. C. De ◽  
...  

ABSTRACTA series of experimental investigations has been made on the a-Si // poly-Si tandem solar cell which is one of the most promised candidate of high cost-performance photovoltaic cell, e.g., high efficiency, low cost with almost no light induced degradation. Employing high conductivity with wide optical band gap p type microcrystalline SiC (μ-SiC) as a window material together with a-SiC as an interface buffer layer and also n type μc-Si as a back ohmic contact layer in the poly-Si based bottom cell, the conversion efficiency of 17.2 % has been obtained. Combining an optically transparent a-Si p-i-n cell as a top cell with an optical coupler between the top and the poly-Si bottom cell, a total efficiency of 20.3 % has been obtained so far on the four-terminal stacked mode structure. A systematic technical data for the optimization of cell structure variation on the developed tandem solar cells are presented and further possibility to improving the performance are discussed.


2012 ◽  
Vol 1426 ◽  
pp. 125-130
Author(s):  
Y.W. Tseng ◽  
Y.H. Lin ◽  
H.J. Hsu ◽  
C.H. Hsu ◽  
C.C. Tsai

ABSTRACTIn this work, the development of hydrogenated amorphous silicon oxide (a-SiOx:H) absorber, a-SiOx:H single-junction solar cells and a-SiOx:H/a-Si1-xGex:H tandem solar cells were presented. The oxygen content of the a-SiOx:H materials controlled by changing CO2-to-SiH4 flow ratio had significant influence on its opto-electrical property. As CO2/SiH4 increased from 0 to 2, the bandgap increased from 1.75 to 2.13 eV while the photo-conductivity decreased from 8.25×10-6 to 1.02×10-8 S/cm. Photo-response of over 105 can be obtained as the bandgap was approximately 1.90 eV. The performance of single-junction solar cells revealed a better efficiency can be obtained as the absorber bandgap was in the range of 1.83 to 1.90 eV. Further increase of the absorber bandgap may lead to the increase in bulk defect density which deteriorated the cell efficiency. Finally, a-SiOx:H/a-Si1-xGex:H tandem solar cell was fabricated with the absorber bandgap of 1.90 eV in the top cell. By matching the current between the component cells, the tandem cell efficiency of 7.38% has been achieved.


Author(s):  
U. Fegade

Solar energy is an attractive renewable energy source across the globe that can help overcome the energy crises and has the ability to replace conventional resources. Hybrid solar cells have higher conversion efficiency. In the current chapter the research related to the carbon nanotubes, organic and inorganic solar cell, dye-sensitized solar cells and tandem solar cells are reviewed. The organic solar cells are most suitable and economic, but it has low efficiency of up to 15%. The inorganic solar cells are very expensive and have high efficiency of up to 46% and are used in space applications. The hybrid solar cell is the third type and the perovskite tandem has already proven to be quite efficient (17%) and low cost, mostly because of the cheap materials that are being used.


2015 ◽  
Vol 37 ◽  
pp. 434 ◽  
Author(s):  
Razagh Hafezi ◽  
Soroush Karimi ◽  
Sharie Jamalzae ◽  
Masoud Jabbari

“Micromorph” tandem solar cells consisting of a microcrystalline silicon bottom cell and an amorphous silicon top cell are considered as one of the most promising new thin-film silicon solar-cell concepts. Their promise lies in the hope of simultaneously achieving high conversion efficiencies at relatively low manufacturing costs. The concept was introduced by IMT Neuchâtel, based on the VHF-GD (very high frequency glow discharge) deposition method. The key element of the micromorph cell is the hydrogenated microcrystalline silicon bottom cell that opens new perspectives for low-temperature thin-film crystalline silicon technology. This paper describes the use, within p–i–n- and n–i–p-type solar cells, of hydrogenated amorphous silicon (a-Si:H) and hydrogenated microcrystalline silicon (_c-Si:H) thin films (layers), both deposited at low temperatures (200_C) by plasma-assisted chemical vapour deposition (PECVD), from a mixture of silane and hydrogen. Optical and electrical properties of the i-layers are described. Finally, present performances and future perspectives for a high efficiency ‘micromorph’ (mc-Si:Hya-Si:H) tandem solar cells are discussed.


2020 ◽  
Vol 4 (2) ◽  
pp. 549-558 ◽  
Author(s):  
Manuel Schnabel ◽  
Henning Schulte-Huxel ◽  
Michael Rienäcker ◽  
Emily L. Warren ◽  
Paul F. Ndione ◽  
...  

Three-terminal tandem solar cell with conductive adhesive interconnect and back-contacted bottom cell delivers 27.3% efficiency.


MRS Advances ◽  
2020 ◽  
Vol 5 (8-9) ◽  
pp. 441-450 ◽  
Author(s):  
Masafumi Yamaguchi ◽  
Kan-Hua Lee ◽  
Daisuke Sato ◽  
Kenji Araki ◽  
Nobuaki Kojima ◽  
...  

ABSTRACTDevelopment of high-efficiency solar cell modules and new application fields are significant for the further development of photovoltaics (PV) and creation of new clean energy infrastructure based on PV. Especially, development of PV-powered EV applications is desirable and very important for this end. This paper shows analytical results for efficiency potential of various solar cells for choosing candidates of high-efficiency solar cell modules for automobile applications. As a result of analysis, Si tandem solar cells are thought to be some of their candidates. This paper also overviews efficiency potential and recent activities of various Si tandem solar cells such as III-V/Si, II-VI/Si, chalcopyrite/Si, perovskite/Si and nanowire/Si tandem solar cells. The III-V/Si tandem solar cells are expected to have a high potential for various applications because of high efficiency with efficiencies of more than 36% for 2-junction and 42 % for 3-junction tandem solar cells under 1-sun AM1.5 G, lightweight and low-cost potential. Recent results for our 28.2 % efficiency and Sharp’s 33% mechanically stacked InGaP/GaAs/Si 3-junction solar cell are also presented. Approaches to automobile application by using III-V/Si tandem solar cells and static low concentration are presented.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3186
Author(s):  
Mohammed Islam Elsmani ◽  
Noshin Fatima ◽  
Michael Paul A. Jallorina ◽  
Suhaila Sepeai ◽  
Mohd Sukor Su’ait ◽  
...  

The unprecedented development of perovskite-silicon (PSC-Si) tandem solar cells in the last five years has been hindered by several challenges towards industrialization, which require further research. The combination of the low cost of perovskite and legacy silicon solar cells serve as primary drivers for PSC-Si tandem solar cell improvement. For the perovskite top-cell, the utmost concern reported in the literature is perovskite instability. Hence, proposed physical loss mechanisms for intrinsic and extrinsic instability as triggering mechanisms for hysteresis, ion segregation, and trap states, along with the latest proposed mitigation strategies in terms of stability engineering, are discussed. The silicon bottom cell, being a mature technology, is currently facing bottleneck challenges to achieve power conversion efficiencies (PCE) greater than 26.7%, which requires more understanding in the context of light management and passivation technologies. Finally, for large-scale industrialization of the PSC-Si tandem solar cell, the promising silicon wafer thinning, and large-scale film deposition technologies could cause a shift and align with a more affordable and flexible roll-to-roll PSC-Si technology. Therefore, this review aims to provide deliberate guidance on critical fundamental issues and configuration factors in current PSC-Si tandem technologies towards large-scale industrialization. to meet the 2031 PSC-Si Tandem road maps market target.


2014 ◽  
Vol 16 (17) ◽  
pp. 7672-7676 ◽  
Author(s):  
M. J. Speirs ◽  
B. G. H. M. Groeneveld ◽  
L. Protesescu ◽  
C. Piliego ◽  
M. V. Kovalenko ◽  
...  

A tandem solar cell is fabricated with one PbS QD and one polymer–fullerene subcell for a broad spectral coverage. Tungsten(vi) oxide is demonstrated as an effective interlayer.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Manvika Singh ◽  
Rudi Santbergen ◽  
Indra Syifai ◽  
Arthur Weeber ◽  
Miro Zeman ◽  
...  

Abstract Since single junction c-Si solar cells are reaching their practical efficiency limit. Perovskite/c-Si tandem solar cells hold the promise of achieving greater than 30% efficiencies. In this regard, optical simulations can deliver guidelines for reducing the parasitic absorption losses and increasing the photocurrent density of the tandem solar cells. In this work, an optical study of 2, 3 and 4 terminal perovskite/c-Si tandem solar cells with c-Si solar bottom cells passivated by high thermal-budget poly-Si, poly-SiOx and poly-SiCx is performed to evaluate their optical performance with respect to the conventional tandem solar cells employing silicon heterojunction bottom cells. The parasitic absorption in these carrier selective passivating contacts has been quantified. It is shown that they enable greater than 20 mA/cm2 matched implied photocurrent density in un-encapsulated 2T tandem architecture along with being compatible with high temperature production processes. For studying the performance of such tandem devices in real-world irradiance conditions and for different locations of the world, the effect of solar spectrum and angle of incidence on their optical performance is studied. Passing from mono-facial to bi-facial tandem solar cells, the photocurrent density in the bottom cell can be increased, requiring again optical optimization. Here, we analyse the effect of albedo, perovskite thickness and band gap as well as geographical location on the optical performance of these bi-facial perovskite/c-Si tandem solar cells. Our optical study shows that bi-facial 2T tandems, that also convert light incident from the rear, require radically thicker perovskite layers to match the additional current from the c-Si bottom cell. For typical perovskite bandgap and albedo values, even doubling the perovskite thickness is not sufficient. In this respect, lower bandgap perovskites are very interesting for application not only in bi-facial 2T tandems but also in related 3T and 4T tandems.


Sign in / Sign up

Export Citation Format

Share Document