Exploring the possibilities of two-dimensional transition metal carbides as anode materials for sodium batteries

2015 ◽  
Vol 17 (7) ◽  
pp. 5000-5005 ◽  
Author(s):  
Eunjeong Yang ◽  
Hyunjun Ji ◽  
Jaehoon Kim ◽  
Heejin Kim ◽  
Yousung Jung

MXenes are predicted to be a family of promising Na anode materials with desirable electrochemical properties using density functional theory.

RSC Advances ◽  
2017 ◽  
Vol 7 (88) ◽  
pp. 55912-55919 ◽  
Author(s):  
H. Zhang ◽  
Z. H. Fu ◽  
D. Legut ◽  
T. C. Germann ◽  
R. F. Zhang

The stability of the stacked two-dimensional (2D) transition metal carbides and their interlayered friction in different configurations are comparatively studied by means of density functional theory (DFT).


2021 ◽  
Author(s):  
Dong Tian ◽  
Steven R. Denny ◽  
Kongzhai Li ◽  
Hua Wang ◽  
Shyam Kattel ◽  
...  

This review summarizes density functional theory (DFT) studies of TMCs and TMNs as electrocatalysts. It provides atomistic details of HER, OER, ORR, N2RR and CO2RR and also presents a future outlook in designing TMCs and TMNs based electrocatalysts.


2020 ◽  
Vol 22 (34) ◽  
pp. 19249-19253
Author(s):  
Marc Figueras ◽  
Anabel Jurado ◽  
Ángel Morales-García ◽  
Francesc Viñes ◽  
Francesc Illas

A density functional theory-based study shows that surface energy stabilization reconstruction mechanisms of transition metal carbides and nitrides occur when featuring a crystal structure different from most stable polymorph, and driven by its instablity.


Author(s):  
Mohamed Helal ◽  
H. M. El-Sayed ◽  
Ahmed A Maarouf ◽  
Mohamed Fadlallah

Motivated by the successful preparation of two-dimensional transition metal dichalcogenides (2D- TMDs) nanomeshes in the last three years, we use density functional theory (DFT) to study the structural stability, mechanical,...


Nanoscale ◽  
2015 ◽  
Vol 7 (37) ◽  
pp. 15385-15391 ◽  
Author(s):  
Ming Li ◽  
Jun Dai ◽  
Xiao Cheng Zeng

A comprehensive study of the effect of tensile strain (ε = 0% to 8%) on the electronic structures of two-dimensional (2D) transition-metal trichalcogenide (TMTC) monolayers MX3 (M = Ti, Zr, Hf, Nb; X = S, Se Te) is performed on the basis of density functional theory (DFT) computation.


2021 ◽  
Author(s):  
Thomas Joseph ◽  
Mahdi Ghorbani-Asl ◽  
Matthias Batzill ◽  
Arkady V Krasheninnikov

The adsorption and dissociation of water molecules on two-dimensional transition metal dichalco- genides (TMDs) is expected to be dominated by point defects, such as vacancies, and edges. At the same...


Sign in / Sign up

Export Citation Format

Share Document