On the importance of shear dissipative forces in coarse-grained dynamics of molecular liquids

2015 ◽  
Vol 17 (16) ◽  
pp. 10795-10804 ◽  
Author(s):  
Sergei Izvekov ◽  
Betsy M. Rice

In this work we demonstrate from first principles that the shear frictions describing dissipative forces in the direction normal to the vector connecting the coarse-grained (CG) particles in dissipative particle dynamics (DPD) could be dominant for certain real molecular liquids at high-resolution coarse-graining.

2013 ◽  
Vol 12 (02) ◽  
pp. 1250111 ◽  
Author(s):  
HAILONG XU ◽  
QIUYU ZHANG ◽  
HEPENG ZHANG ◽  
BAOLIANG ZHANG ◽  
CHANGJIE YIN

Dissipative particle dynamics (DPD) was initially used to simulate the polystyrene/nanoparticle composite microspheres (PNCM) in this paper. The coarse graining model of PNCM was established. And the DPD parameterization of the model was represented in detail. The DPD repulsion parameters were calculated from the cohesive energy density which could be calculated by amorphous modules in Materials Studio. The equilibrium configuration of the simulated PNCM shows that the nanoparticles were actually "modified" with oleic acid and the modified nanoparticles were embedded in the bulk of polystyrene. As sodium dodecyl sulfate (SDS) was located in the interface between water and polystyrene, the hydrophilic head of SDS stretched into water while the hydrophobic tailed into polystyrene. All simulated phenomena were consistent with the experimental results in preparation of polystyrene/nanoparticles composite microspheres. The effect of surface modification of nanoparticles on its dispersion in polystyrene matrix was also studied by adjusting the interaction parameters between the OA and NP beads. The final results indicated that the nanoparticles removed from the core of composite microsphere to the surface with increase of a OA-NP . All the simulated results demonstrated that our coarse–grained model was reasonable.


1998 ◽  
Vol 09 (08) ◽  
pp. 1307-1318 ◽  
Author(s):  
Edo S. Boek ◽  
Paul Van Der Schoot

Dissipative Particle Dynamics (DPD) simulations were performed to investigate resolution or "coarse graining" effects on the simulation results. Fluid flow through a periodic array of spheres has been studied as a model for fluid filtration into a porous medium. In our model system, it appears that quantitatively correct results for the dimensionless drag can be obtained for relatively small system sizes. For higher solid volume fractions, it is necessary to increase the system size to avoid finite size and resolution effects. Simulations of colloidal spheres suspended in a DPD fluid show effective attraction between the large colloid particles, causing depletion aggregation. This effect may be expected as a consequence of the coarse-grained nature of the DPD fluid. By imposing a steady shear rate the aggregation can be suppressed. The results show that for dilute suspensions, the Brownian noise in the particle interactions causes an effective colloid polydispersity, which suppresses aggregation effects.


2011 ◽  
Vol 50 (1) ◽  
pp. 69-77 ◽  
Author(s):  
Justin R. Spaeth ◽  
Todd Dale ◽  
Ioannis G. Kevrekidis ◽  
Athanassios Z. Panagiotopoulos

Soft Matter ◽  
2021 ◽  
Author(s):  
Rakesh K Vaiwala ◽  
Ganapathy Ayappa

A coarse-grained force field for molecular dynamics simulations of native structures of proteins in a dissipative particle dynamics (DPD) framework is developed. The parameters for bonded interactions are derived by...


2017 ◽  
Vol 44 (7) ◽  
pp. 540-550 ◽  
Author(s):  
Rakesh Vaiwala ◽  
Sameer Jadhav ◽  
Rochish Thaokar

Sign in / Sign up

Export Citation Format

Share Document