A nano-sized solid acid synthesized from rice hull ash for biodiesel production

RSC Advances ◽  
2014 ◽  
Vol 4 (39) ◽  
pp. 20535-20539 ◽  
Author(s):  
Danlin Zeng ◽  
Shenglan Liu ◽  
Wanjun Gong ◽  
Hongxiang Chen ◽  
Guanghui Wang

A nano-sized solid acid was synthesized from rice hull ash by acid activation. The solid acid is amorphous silica with -OH and -SO3H functional acid groups, and this catalyst exhibits excellent activity and recyclability for biodiesel production.


2010 ◽  
Vol 12 (2) ◽  
pp. 123
Author(s):  
Matt Berlin ◽  
Jesse Allen ◽  
Varadharajan Kailasam ◽  
David Rosenberg ◽  
Edward Rosenberg

Rice Hull Ash (RHA) was converted to amorphous silica gel using a modified version of published literature procedures. The gels were characterized by a comparison of their CPMAS [29] Si NMR and Scanning Electron Microscopy (SEM) images with commercial silica gels. The resulting gels were silanized with a 7.5:1 mixture of methyltrichlorosilane and chloropropyltrichlorosilane and then reacted with poly(allylamine) (PAA) to produce the silica polyamine composite (SPC) BP-1. The BP-1 was then further modified with pyridine-2-carboxaldehyde to form the copper selective SPC, CuSELECT. This procedure follows that used to produce the commercialized version of these composite materials from commercially available amorphous silica gels. The composites were characterized by solid state NMR techniques, elemental analysis, SEM, porosimetry, and metal ion capacity and selectivity. The overall goal of the project was to determine the feasibility of using RHA to make SPC. The observed strengths and weaknesses of this approach are discussed.



2013 ◽  
Vol 19 (12) ◽  
pp. 3647-3651
Author(s):  
Yeliz Basaran-Elalmis ◽  
Sevil Yucel ◽  
Ismail Aydin ◽  
Bilge Sema Tekerek


2001 ◽  
Vol 34 (1) ◽  
pp. 1-6 ◽  
Author(s):  
YU-YANG CHANG ◽  
CHUN-I LIN ◽  
HSI-KUEI CHEN


Waterlines ◽  
1983 ◽  
Vol 2 (2) ◽  
pp. 21-23 ◽  
Author(s):  
Barnes ◽  
Mampitiyarachichi


Author(s):  
Charishma Venkata Sai Anne ◽  
Karthikeyan S. ◽  
Arun C.

Background: Waste biomass derived reusable heterogeneous acid based catalysts are more suitable to overcome the problems associated with homogeneous catalysts. The use of agricultural biomass as catalyst for transesterification process is more economical and it reduces the overall production cost of biodiesel. The identification of an appropriate suitable catalyst for effective transesterification will be a landmark in biofuel sector Objective: In the present investigation, waste wood biomass was used to prepare a low cost sulfonated solid acid catalyst for the production of biodiesel using waste cooking oil. Methods: The pretreated wood biomass was first calcined then sulfonated with H2SO4. The catalyst was characterized by various analyses such as, Fourier-transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-ray diffraction (XRD). The central composite design (CCD) based response surface methodology (RSM) was applied to study the influence of individual process variables such as temperature, catalyst load, methanol to oil molar ration and reaction time on biodiesel yield. Results: The obtained optimized conditions are as follows: temperature (165 ˚C), catalyst loading (1.625 wt%), methanol to oil molar ratio (15:1) and reaction time (143 min) with a maximum biodiesel yield of 95 %. The Gas chromatographymass spectrometry (GC-MS) analysis of biodiesel produced from waste cooking oil was showed that it has a mixture of both monounsaturated and saturated methyl esters. Conclusion: Thus the waste wood biomass derived heterogeneous catalyst for the transesterification process of waste cooking oil can be applied for sustainable biodiesel production by adding an additional value for the waste materials and also eliminating the disposable problem of waste oils.



2016 ◽  
Vol 8 (6) ◽  
pp. 2131-2140 ◽  
Author(s):  
Ailar Hajimohammadi ◽  
Jannie S. J. van Deventer


2013 ◽  
Vol 19 (4) ◽  
pp. 1413-1419 ◽  
Author(s):  
Rizwan Sheikh ◽  
Moo-Seok Choi ◽  
Jun-Seop Im ◽  
Yeung-Ho Park


2009 ◽  
Vol 48 (20) ◽  
pp. 9350-9353 ◽  
Author(s):  
Cholada Komintarachat ◽  
Sathaporn Chuepeng


2018 ◽  
Vol 156 ◽  
pp. 03002
Author(s):  
Iwan Ridwan ◽  
Mukhtar Ghazali ◽  
Adi Kusmayadi ◽  
Resza Diwansyah Putra ◽  
Nina Marlina ◽  
...  

The oleic acid solubility in methanol is low due to two phase separation, and this causes a slow reaction time in biodiesel production. Tetrahydrofuran as co-solvent can decrease the interfacial surface tension between methanol and oleic acid. The objective of this study was to investigate the effect of co-solvent, methanol to oleic acid molar ratio, catalyst amount, and temperature of the reaction to the free fatty acid conversion. Oleic acid esterification was conducted by mixing oleic acid, methanol, tetrahydrofuran and Amberlyst 15 as a solid acid catalyst in a batch reactor. The Amberlyst 15 used had an exchange capacity of 2.57 meq/g. Significant free fatty acid conversion increments occur on biodiesel production using co-solvent compared without co-solvent. The highest free fatty acid conversion was obtained over methanol to the oleic acid molar ratio of 25:1, catalyst use of 10%, the co-solvent concentration of 8%, and a reaction temperature of 60°C. The highest FFA conversion was found at 28.6 %, and the steady state was reached after 60 minutes. In addition, the use of Amberlyst 15 oleic acid esterification shows an excellent performance as a solid acid catalyst. Catalytic activity was maintained after 4 times repeated use and reduced slightly in the fifth use.



Sign in / Sign up

Export Citation Format

Share Document