scholarly journals A new class of pyrenyl solid-state emitters: 1-pyrenyl ynones. Synthesis via the Friedel–Crafts route, molecular and electronic structure and photophysical properties

RSC Advances ◽  
2014 ◽  
Vol 4 (60) ◽  
pp. 31594-31601 ◽  
Author(s):  
Rafał Flamholc ◽  
Damian Plażuk ◽  
Janusz Zakrzewski ◽  
Rémi Métivier ◽  
Keitaro Nakatani ◽  
...  

Friedel-Crafts acylation of pyrene with alkynoic acids in the presence of trifluoroacetic anhydride and triflic acid constitutes a direct and efficient route to 1-pyrenyl ynones fluorescent in solution and in the solid state.

Author(s):  
J. Fink

Conducting polymers comprises a new class of materials achieving electrical conductivities which rival those of the best metals. The parent compounds (conjugated polymers) are quasi-one-dimensional semiconductors. These polymers can be doped by electron acceptors or electron donors. The prototype of these materials is polyacetylene (PA). There are various other conjugated polymers such as polyparaphenylene, polyphenylenevinylene, polypoyrrole or polythiophene. The doped systems, i.e. the conducting polymers, have intersting potential technological applications such as replacement of conventional metals in electronic shielding and antistatic equipment, rechargable batteries, and flexible light emitting diodes.Although these systems have been investigated almost 20 years, the electronic structure of the doped metallic systems is not clear and even the reason for the gap in undoped semiconducting systems is under discussion.


Author(s):  
Huimin Guo ◽  
Xiaolin Ma ◽  
Zhiwen Lei ◽  
Yang Qiu ◽  
Bernhard Dick ◽  
...  

The electronic structure and photophysical properties of a series of N-Methyl and N-Acetyl substituted alloxazine (AZs) were investigated with extensive density functional theory (DFT) and time-dependent density functional theory (TD-DFT)...


Author(s):  
Poulami Pattanayak ◽  
Sankar Prasad Parua ◽  
Debprasad Patra ◽  
Ashoke Prasun Chattopadhyay ◽  
Surajit Chattopadhyay

2019 ◽  
Vol 15 ◽  
pp. 2013-2019 ◽  
Author(s):  
Esther Nieland ◽  
Oliver Weingart ◽  
Bernd M Schmidt

ortho-Fluoroazobenzenes are a remarkable example of bistable photoswitches, addressable by visible light. Symmetrical, highly fluorinated azobenzenes bearing an iodine substituent in para-position were shown to be suitable supramolecular building blocks both in solution and in the solid state in combination with neutral halogen bonding acceptors, such as lutidines. Therefore, we investigate the photochemistry of a series of azobenzene photoswitches. Upon introduction of iodoethynyl groups, the halogen bonding donor properties are significantly strengthened in solution. However, the bathochromic shift of the π→π* band leads to a partial overlap with the n→π* band, making it slightly more difficult to address. The introduction of iodine substituents is furthermore accompanied with a diminishing thermal half-life. A series of three azobenzenes with different halogen bonding donor properties are discussed in relation to their changing photophysical properties, rationalized by DFT calculations.


Sign in / Sign up

Export Citation Format

Share Document