Solvent effect on electron and proton transfer in the excited state of a hydrogen bonded phenol–imidazole complex

RSC Advances ◽  
2014 ◽  
Vol 4 (73) ◽  
pp. 38551-38557 ◽  
Author(s):  
Baotao Kang ◽  
Hu Shi ◽  
Shihai Yan ◽  
Jin Yong Lee

Density functional theory calculations have been carried out for the ground state (S0) and the first excited state (S1) of the H-bonded phenol and imidazole complex as a model system for the active site of photosystem II.

2011 ◽  
Vol 279 ◽  
pp. 170-173
Author(s):  
Qing Liong Liu ◽  
Shu Wei Wang ◽  
Li Lv ◽  
Xiao Jing Wang

The charge transfer and structural distortions that occurred in the complex CpRh(CO)2 upon excitation with an light irradiation were studied by density functional theory (DFT). The calculations showed that the electrons transferred from Cp to CO ligands with the transition of CpRh(CO)2 from ground state to the first excited state. Accompanying with this transfer process, CpM(CO)2 became distorted and the linear bond of M-CO became bent upon excitation. The second excitation is the strongest excitation which is identified to be metal to ligand CO charge transfer (MLCT) excitations. We also found the lowest excited state has little effect for the M-CO bond photoactivation while the photodissociation of CO from CpM(CO)2 can be achieved in the second excited state.


RSC Advances ◽  
2021 ◽  
Author(s):  
Guanzhao Wen ◽  
Xianshao Zou ◽  
Rong Hu ◽  
Jun Peng ◽  
Zhifeng Chen ◽  
...  

Ground- and excited-states properties of N2200 have been studied by steady-state and time-resolved spectroscopies as well as time-dependent density functional theory calculations.


RSC Advances ◽  
2016 ◽  
Vol 6 (110) ◽  
pp. 108404-108410 ◽  
Author(s):  
Y. Y. Pan ◽  
J. Huang ◽  
Z. M. Wang ◽  
S. T. Zhang ◽  
D. W. Yu ◽  
...  

The ωB97X was the most reliable functional for the accurate description of HLCT state at ground state and excited state.


2017 ◽  
Vol 897 ◽  
pp. 269-274 ◽  
Author(s):  
András Csóré ◽  
Ádám Gali

Paramagnetic defects in solids have become attractive systems for quantum computing as well as magnetometry in recent years. One of the leading contenders is the negatively charged nitrogen-vacancy defect (NV center) in diamond proposed to be highly promising with respect the afore-mentioned applications. In our study we investigate the NCVSi defect in 3C, 4H and 6H SiC as alternative choices with superior properties. Electronic structure of NV center in SiC exhibits S = 1 triplet ground state with the possibility of optical spin polarization. On the other hand, our results obtained by density functional theory calculations may contribute to unambiguously identify the possible defect configurations.


Sign in / Sign up

Export Citation Format

Share Document