Ultrafast spray pyrolysis fabrication of a nanophase ZnMn2O4 anode towards high-performance Li-ion batteries

RSC Advances ◽  
2015 ◽  
Vol 5 (18) ◽  
pp. 13667-13673 ◽  
Author(s):  
Longhai Zhang ◽  
Siqi Zhu ◽  
Hui Cao ◽  
Gang Pang ◽  
Jingdong Lin ◽  
...  

Nanophase ZnMn2O4 was ultrafast fabricated via a green spray pyrolysis strategy, and exhibited large initial specific discharge capacity, good rate capability, and excellent cycling stability at 1 C rate.

2016 ◽  
Vol 4 (23) ◽  
pp. 9177-9183 ◽  
Author(s):  
Dongming Cui ◽  
Di Tian ◽  
Shasha Chen ◽  
Liangjie Yuan

Graphene wrapped 3,4,9,10-perylenetetracarboxylic dianhydride shows a high reversible capacity, an excellent cycling stability and a superior rate capability for Li-ion batteries.


2016 ◽  
Vol 40 (8) ◽  
pp. 7197-7203 ◽  
Author(s):  
Satyendar Sunkara ◽  
N. Munichandraiah ◽  
K. B. R. Varma ◽  
S. A. Shivashankar

Microspheres of anatase TiO2 exhibiting excellent cycling stability as anode materials for Li-ion batteries have been prepared by sonochemical synthesis.


2021 ◽  
Vol 35 (5) ◽  
pp. 4570-4576
Author(s):  
Najeeb ur Rehman Lashari ◽  
Mingshu Zhao ◽  
Qingyang Zheng ◽  
Xinhai He ◽  
Irfan Ahmed ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (77) ◽  
pp. 63012-63016 ◽  
Author(s):  
Yourong Wang ◽  
Wei Zhou ◽  
Liping Zhang ◽  
Guangsen Song ◽  
Siqing Cheng

A SiO2@NiO core–shell electrode exhibits almost 100% coulombic efficiency, excellent cycling stability and rate capability after the first few cycles.


2015 ◽  
Vol 3 (7) ◽  
pp. 3962-3967 ◽  
Author(s):  
Xiaolei Wang ◽  
Ge Li ◽  
Fathy M. Hassan ◽  
Matthew Li ◽  
Kun Feng ◽  
...  

High-performance robust CNT–graphene–Si composites are designed as anode materials with enhanced rate capability and excellent cycling stability for lithium-ion batteries. Such an improvement is mainly attributed to the robust sponge-like architecture, which holds great promise in future practical applications.


Batteries ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 51
Author(s):  
Davood Sabaghi ◽  
Mahmoud Madian ◽  
Ahmad Omar ◽  
Steffen Oswald ◽  
Margitta Uhlemann ◽  
...  

TiO2 represents one of the promising anode materials for lithium ion batteries due to its high thermal and chemical stability, relatively high theoretical specific capacity and low cost. However, the electrochemical performance, particularly for mesoporous TiO2, is limited and must be further developed. Elemental doping is a viable route to enhance rate capability and discharge capacity of TiO2 anodes in Li-ion batteries. Usually, elemental doping requires elevated temperatures, which represents a challenge, particularly for sulfur as a dopant. In this work, S-doped TiO2 nanotubes were successfully synthesized in situ during the electrochemical anodization of a titanium substrate at room temperature. The electrochemical anodization bath represented an ethylene glycol-based solution containing NH4F along with Na2S2O5 as the sulfur source. The S-doped TiO2 anodes demonstrated a higher areal discharge capacity of 95 µAh·cm−2 at a current rate of 100 µA·cm−2 after 100 cycles, as compared to the pure TiO2 nanotubes (60 µAh·cm−2). S-TiO2 also exhibited a significantly improved rate capability up to 2500 µA·cm−2 as compared to undoped TiO2. The improved electrochemical performance, as compared to pure TiO2 nanotubes, is attributed to a lower impedance in S-doped TiO2 nanotubes (STNTs). Thus, the direct S-doping during the anodization process is a promising and cost-effective route towards improved TiO2 anodes for Li-ion batteries.


RSC Advances ◽  
2015 ◽  
Vol 5 (10) ◽  
pp. 7356-7362 ◽  
Author(s):  
Minchan Li ◽  
Wenxi Wang ◽  
Mingyang Yang ◽  
Fucong Lv ◽  
Lujie Cao ◽  
...  

A novel microcuboid-shaped C–Fe3O4 assembly consisting of ultrafine nanoparticles derived from Fe–MOFs exhibits a greatly enhanced performance with high specific capacity, excellent cycling stability and good rate capability as anode materials for lithium ion batteries.


Sign in / Sign up

Export Citation Format

Share Document