scholarly journals Highly enantioselective access to diketopiperazines via cinchona alkaloid catalyzed Michael additions

2015 ◽  
Vol 6 (2) ◽  
pp. 1350-1354 ◽  
Author(s):  
Alejandro Cabanillas ◽  
Christopher D. Davies ◽  
Louise Male ◽  
Nigel S. Simpkins

Alkaloid catalysed additions to triketopiperazines gives products in high yield and er (88 : 12 to 99 : 1), including bridged hydroxy-DKPs via Michael-addition–ring closure.

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1159
Author(s):  
Eskedar Tessema ◽  
Vijayanath Elakkat ◽  
Chiao-Fan Chiu ◽  
Jing-Hung Zheng ◽  
Ka Long Chan ◽  
...  

Phospha-Michael addition, which is the addition reaction of a phosphorus-based nucleophile to an acceptor-substituted unsaturated bond, certainly represents one of the most versatile and powerful tools for the formation of P-C bonds, since many different electrophiles and P nucleophiles can be combined with each other. This offers the possibility to access many diversely functionalized products. In this work, two kinds of basic pyridine-based organo-catalysts were used to efficiently catalyze phospha-Michael addition reactions, the 4-N,N-dimethylaminopyridinium saccharinate (DMAP·Hsac) salt and a fluorous long-chained pyridine (4-Rf-CH2OCH2-py, where Rf = C11F23). These catalysts have been synthesized and characterized by Lu’s group. The phospha-Michael addition of diisopropyl, dimethyl or triethyl phosphites to α, β-unsaturated malonates in the presence of those catalysts showed very good reactivity with high yield at 80–100 °C in 1–4.5 h with high catalytic recovery and reusability. With regard to significant catalytic recovery, sometimes more than eight cycles were observed for DMAP·Hsac adduct by using non-polar solvents (e.g., ether) to precipitate out the catalyst. In the case of the fluorous long-chained pyridine, the thermomorphic method was used to efficiently recover the catalyst for eight cycles in all the reactions. Thus, the easy separation of the catalysts from the products revealed the outstanding efficacy of our systems. To our knowledge, these are good examples of the application of recoverable organo-catalysts to the DMAP·Hsac adduct by using non-polar solvent and a fluorous long-chained pyridine under the thermomorphic mode in phospha-Michael addition reactions.


2017 ◽  
Vol 41 (3) ◽  
pp. 168-171 ◽  
Author(s):  
Zheng Li ◽  
Jiasheng Li ◽  
Jingya Yang

Seventeen examples of 2,6-diarylspiro[cyclohexane-1,3′-indoline]-2′4-diones were efficiently prepared by the Cs2CO3-catalysed chemoselective double Michael additions of indolin-2-one to divinyl ketones. This method has the advantage of high chemoselectivity, mild reaction conditions, high yield and atom- and step-economy.


2020 ◽  
Vol 24 (7) ◽  
pp. 746-773
Author(s):  
Péter Bakó ◽  
Tamás Nemcsok ◽  
Zsolt Rapi ◽  
György Keglevich

: Many catalysts were tested in asymmetric Michael additions in order to synthesize enantioenriched products. One of the most common reaction types among the Michael reactions is the conjugated addition of malonates to enones making it possible to investigate the structure–activity relationship of the catalysts. The most commonly used Michael acceptors are chalcone, substituted chalcones, chalcone derivatives, cyclic enones, while typical donors may be dimethyl, diethyl, dipropyl, diisopropyl, dibutyl, di-tert-butyl and dibenzyl malonates. This review summarizes the most important enantioselective catalysts applied in these types of reactions.


Synlett ◽  
2018 ◽  
Vol 29 (12) ◽  
pp. 1589-1592 ◽  
Author(s):  
Abolfazl Olyaei ◽  
Mahnaz Saraei ◽  
Reyhaneh Khoeiniha

A high-yielding cyclocondensation of 4-hydroxycoumarin, phenylglyoxal monohydrate, and heteroarylamines proceeds without catalysis, which gives novel functionalized furo[3,2-c]coumarins and heteroarylamino alkylation of coumarin products in acetonitrile under reflux, is reported for the first time. This tandem process involves sequentially an aldol condensation, Michael addition, a ring closure, and dehydration reaction.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1905
Author(s):  
Junyi Chen ◽  
Xutao Ma ◽  
Kevin J. Edgar

Polysaccharide conjugates are important renewable materials. If properly designed, they may for example be able to carry drugs, be proactive (e.g., with amino acid substituents) and can carry a charge. These aspects can be particularly useful for biomedical applications. Herein, we report a simple approach to preparing polysaccharide conjugates. Thiol-Michael additions can be mild, modular, and efficient, making them useful tools for post-modification and the tailoring of polysaccharide architecture. In this study, hydroxypropyl cellulose (HPC) and dextran (Dex) were modified by methacrylation. The resulting polysaccharide, bearing α,β-unsaturated esters with tunable DS (methacrylate), was reacted with various thiols, including 2-thioethylamine, cysteine, and thiol functional quaternary ammonium salt through thiol-Michael addition, affording functionalized conjugates. This click-like synthetic approach provided several advantages including a fast reaction rate, high conversion, and the use of water as a solvent. Among these polysaccharide conjugates, the ones bearing quaternary ammonium salts exhibited competitive antimicrobial performance, as supported by a minimum inhibitory concentration (MIC) study and tracked by SEM characterization. Overall, this methodology provides a versatile route to polysaccharide conjugates with diverse functionalities, enabling applications such as antimicrobial activity, gene or drug delivery, and biomimicry.


2012 ◽  
Vol 51 (25) ◽  
pp. 6200-6204 ◽  
Author(s):  
Claudio Curti ◽  
Gloria Rassu ◽  
Vincenzo Zambrano ◽  
Luigi Pinna ◽  
Giorgio Pelosi ◽  
...  

2017 ◽  
Vol 23 (4) ◽  
Author(s):  
Zheng Li ◽  
Tianpeng Li ◽  
Rugang Fu ◽  
Jingya Yang

AbstractThe regioselective 1,4-conjugate aza-Michael addition of dienones with benzotriazole catalyzed by potassium acetate is described. A series of 3-(benzotriazol-1-yl)-1,5-diarylpent-4-en-1-ones were efficiently synthesized under mild conditions. This protocol has advantages of transition-metal free catalyst, high yield and high regioselectivity.


1978 ◽  
Vol 31 (5) ◽  
pp. 1095 ◽  
Author(s):  
DE Cowley ◽  
CC Duke ◽  
AJ Liepa ◽  
JK Macleod ◽  
DS Letham

The structures of the major stable plant metabolites of the cytokinins zeatin and 6-benzylaminopurine have been confirmed by synthesis to be 7- and 9-β-D-glucopyranosides. The small quantities of metabolites initially isolated (< 100 μg) precluded assignment of the glucose ring size or configuration of the anomeric linkage so that synthesis of both the furanose and pyranose forms of 7-β-D- and 9-β-D-glucosylzeatin and 6-benzylaminopurine was undertaken which allowed direct u.v., m.s. and t.l.c. comparison with the metabolites. Numerous synthetic routes to the unusual 7-glucosides of the two cytokinins were explored, the most successful utilizing a one-pot pyrimidine ring closure of an imidazole derivative to afford directly in high yield the required 7-glucosides of zeatin and 6-benzylaminopurine.


Sign in / Sign up

Export Citation Format

Share Document