scholarly journals Heterologous expression of the avirulence gene ACE1 from the fungal rice pathogen Magnaporthe oryzae

2015 ◽  
Vol 6 (8) ◽  
pp. 4837-4845 ◽  
Author(s):  
Zhongshu Song ◽  
Walid Bakeer ◽  
James W. Marshall ◽  
Ahmed A. Yakasai ◽  
Rozida Mohd Khalid ◽  
...  

Heterologous expression of key components of the Magnaporthe grisea ACE1 gene cluster produces a potential precursor of cryptic avirulence signalling compounds that induce resistance to M. grisea in rice.

ChemBioChem ◽  
2012 ◽  
Vol 13 (13) ◽  
pp. 1946-1952 ◽  
Author(s):  
Xiaoying Bian ◽  
Fan Huang ◽  
Francis A. Stewart ◽  
Liqiu Xia ◽  
Youming Zhang ◽  
...  

2021 ◽  
Author(s):  
Yang Liu ◽  
Haibo Zhou ◽  
Qiyao Shen ◽  
Guangzhi Dai ◽  
Fu Yan ◽  
...  

2021 ◽  
Vol 85 (3) ◽  
pp. 714-721
Author(s):  
Risa Takao ◽  
Katsuyuki Sakai ◽  
Hiroyuki Koshino ◽  
Hiroyuki Osada ◽  
Shunji Takahashi

ABSTRACT Recent advances in genome sequencing have revealed a variety of secondary metabolite biosynthetic gene clusters in actinomycetes. Understanding the biosynthetic mechanism controlling secondary metabolite production is important for utilizing these gene clusters. In this study, we focused on the kinanthraquinone biosynthetic gene cluster, which has not been identified yet in Streptomyces sp. SN-593. Based on chemical structure, 5 type II polyketide synthase gene clusters were listed from the genome sequence of Streptomyces sp. SN-593. Among them, a candidate gene cluster was selected by comparing the gene organization with grincamycin, which is synthesized through an intermediate similar to kinanthraquinone. We initially utilized a BAC library for subcloning the kiq gene cluster, performed heterologous expression in Streptomyces lividans TK23, and identified the production of kinanthraquinone and kinanthraquinone B. We also found that heterologous expression of kiqA, which belongs to the DNA-binding response regulator OmpR family, dramatically enhanced the production of kinanthraquinones.


2013 ◽  
Vol 56 (7) ◽  
pp. 619-627 ◽  
Author(s):  
JinE Li ◽  
ZhengYan Guo ◽  
Wei Huang ◽  
XiangXi Meng ◽  
GuoMin Ai ◽  
...  

2003 ◽  
Vol 93 (11) ◽  
pp. 1452-1459 ◽  
Author(s):  
Yulin Jia ◽  
Gregory T. Bryan ◽  
Leonard Farrall ◽  
Barbara Valent

The resistance gene Pi-ta protects rice crops against the fungal pathogen Magnaporthe grisea expressing the avirulence gene AVR-Pita in a gene-for-gene manner. Pi-ta, originally introgressed into japonica rice from indica origin, was previously isolated by positional cloning. In this study, we report the nucleotide sequence of a 5,113-base pair region containing a japonica susceptibility pi-ta allele, which has overall 99.6% nucleotide identity to the indica Pi-ta allele conferring resistance. The intron region shows the levels of sequence diversity that typically differentiate genes from indica and japonica rices, but the other gene regions show less diversity. Sequences of the Pi-ta allele from resistant cultivars Katy and Drew from the southern United States are identical to the resistance Pi-ta sequence. Sequences from susceptible cultivars El Paso 144 and Cica 9 from Latin America define a third susceptibility haplotype. This brings the total number of Pi-ta haplotypes identified to four, including the resistance allele and three susceptibility alleles. The Pi-ta locus shows low levels of DNA polymorphism compared with other analyzed R genes. Understanding the natural diversity at the Pi-ta locus is important for designing specific markers for incorporation of this R gene into rice-breeding programs.


2012 ◽  
Vol 102 (7) ◽  
pp. 674-682 ◽  
Author(s):  
Nguyen Thi Thanh Nga ◽  
Yoshihiro Inoue ◽  
Izumi Chuma ◽  
Gang-Su Hyon ◽  
Kazuma Okada ◽  
...  

Barley cultivars show various patterns of resistance against isolates of Magnaporthe oryzae and M. grisea. Genetic mechanisms of the resistance of five representative barley cultivars were examined using a highly susceptible barley cultivar, ‘Nigrate’, as a common parent of genetic crosses. The resistance of the five cultivars against Setaria, Oryza, Eleusine, and Triticum isolates of M. oryzae was all attributed to a single locus, designated as Rmo2. Nevertheless, the Rmo2 locus in each cultivar was effective against a different range of isolates. Genetic analyses of pathogenicity suggested that each cultivar carries an allele at the Rmo2 locus that recognizes a different range of avirulence genes. One allele, Rmo2.a, corresponded to PWT1, which conditioned the avirulence of Setaria and Oryza isolates on wheat, in a gene-for-gene manner. The other alleles, Rmo2.b, Rmo2.c, and Rmo2.d, corresponded to more than one avirulence gene. On the other hand, the resistance of those cultivars to another species, M. grisea, was conditioned by another locus, designated as Rmo3. These results suggest that Rmo2 is effective against a broad range of blast isolates but is specific to M. oryzae. Molecular mapping revealed that Rmo2 is located on the 7H chromosome.


ChemBioChem ◽  
2016 ◽  
Vol 17 (15) ◽  
pp. 1407-1411 ◽  
Author(s):  
Lihan Zhang ◽  
Shotaro Hoshino ◽  
Takayoshi Awakawa ◽  
Toshiyuki Wakimoto ◽  
Ikuro Abe

Sign in / Sign up

Export Citation Format

Share Document