Strongly coupled thermal and chemical expansion in the perovskite oxide system Sr(Ti,Fe)O3−α

2015 ◽  
Vol 3 (7) ◽  
pp. 3602-3611 ◽  
Author(s):  
Nicola H. Perry ◽  
Jae Jin Kim ◽  
Sean R. Bishop ◽  
Harry L. Tuller

To evaluate stability in energy conversion devices, thermal and chemical expansion coefficients (CTE, CCE) of Sr(Ti,Fe)O3−α were measured and deconvoluted for the first time, revealing an oxygen stoichiometry-dependent CTE and temperature-dependent CCE.

2012 ◽  
Vol 14 (2) ◽  
pp. 139 ◽  
Author(s):  
E.A. Filonova ◽  
A.S. Dmitriev

<p>The homogeneity area boundaries of La<sub>1-x</sub>Ba<sub>x</sub>Mn<sub>1-y</sub>Cr<sub>y</sub>O<sub>3</sub> solid solutions possessing orthorhombic and rhombohedral structures were established. A state diagram at 1373 K in air in the quaternary oxide system LaMnO<sub>3</sub>-BaMnO<sub>3</sub>-BaCrO<sub>4</sub>-LaCrO<sub>3</sub> was drawn for the first time. Partial substitution of Mn with Cr in La<sub>1-x</sub>Ba<sub>x</sub>MnO<sub>3</sub> stored the thermal compatibility of the cathode with the any traditionally used electrolyte but reduced the electric conductivity of the potential cathode. Based on the linear lengthening measurements of La<sub>1-x</sub>Ba<sub>x</sub>Mn<sub>1-y</sub>CryO<sub>3</sub> and Sr<sub>2</sub>NiMoO<sub>6</sub> samples the values of the thermal expansion coefficients were calculated. It was established that the temperature of the structure transition from a tetragonal to a cubic phase in Sr<sub>2</sub>NiMoO<sub>6</sub> occurred at 508 K. It was stated that double perovskite Sr<sub>2</sub>NiMoO<sub>6</sub> in air did not react with (La<sub>0.9</sub>Sr<sub>0.1</sub>)<sub>0.98</sub>Ga<sub>0.8</sub>Mg<sub>0.2</sub>O<sub>3</sub> up to 1073 K.</p>


Solar Cells ◽  
2020 ◽  
Author(s):  
Samy K.K. Shaat ◽  
Hussam Musleh ◽  
Jihad Asad ◽  
Nabil Shurrab ◽  
Ahmed Issa ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1035
Author(s):  
Ivan Shtepliuk ◽  
Volodymyr Khranovskyy ◽  
Arsenii Ievtushenko ◽  
Rositsa Yakimova

The growth of high-quality ZnO layers with optical properties congruent to those of bulk ZnO is still a great challenge. Here, for the first time, we systematically study the morphology and optical properties of ZnO layers grown on SiC substrates with off-cut angles ranging from 0° to 8° by using the atmospheric pressure meta–organic chemical vapor deposition (APMOCVD) technique. Morphology analysis revealed that the formation of the ZnO films on vicinal surfaces with small off-axis angles (1.4°–3.5°) follows the mixed growth mode: from one side, ZnO nucleation still occurs on wide (0001) terraces, but from another side, step-flow growth becomes more apparent with the off-cut angle increasing. We show for the first time that the off-cut angle of 8° provides conditions for step-flow growth of ZnO, resulting in highly improved growth morphology, respectively structural quality. Temperature-dependent photoluminescence (PL) measurements showed a strong dependence of the excitonic emission on the off-cut angle. The dependences of peak parameters for bound exciton and free exciton emissions on temperature were analyzed. The present results provide a correlation between the structural and optical properties of ZnO on vicinal surfaces and can be utilized for controllable ZnO heteroepitaxy on SiC toward device-quality ZnO epitaxial layers with potential applications in nano-optoelectronics.


2020 ◽  
Vol 6 (9) ◽  
pp. eaay4213 ◽  
Author(s):  
Yang Hu ◽  
Fred Florio ◽  
Zhizhong Chen ◽  
W. Adam Phelan ◽  
Maxime A. Siegler ◽  
...  

Spin and valley degrees of freedom in materials without inversion symmetry promise previously unknown device functionalities, such as spin-valleytronics. Control of material symmetry with electric fields (ferroelectricity), while breaking additional symmetries, including mirror symmetry, could yield phenomena where chirality, spin, valley, and crystal potential are strongly coupled. Here we report the synthesis of a halide perovskite semiconductor that is simultaneously photoferroelectricity switchable and chiral. Spectroscopic and structural analysis, and first-principles calculations, determine the material to be a previously unknown low-dimensional hybrid perovskite (R)-(−)-1-cyclohexylethylammonium/(S)-(+)-1 cyclohexylethylammonium) PbI3. Optical and electrical measurements characterize its semiconducting, ferroelectric, switchable pyroelectricity and switchable photoferroelectric properties. Temperature dependent structural, dielectric and transport measurements reveal a ferroelectric-paraelectric phase transition. Circular dichroism spectroscopy confirms its chirality. The development of a material with such a combination of these properties will facilitate the exploration of phenomena such as electric field and chiral enantiomer–dependent Rashba-Dresselhaus splitting and circular photogalvanic effects.


Author(s):  
Wei Li ◽  
Cheng-Bing Wang ◽  
Jinzhu Yang ◽  
Jiulong wang ◽  
Wenhe Zhang

Solar-thermal conversion is very appealing for various applications, especially in wearable energy conversion devices. Despite various solar absorbers having been developed, they are usually suitable only for rigid substrates. Hence...


2017 ◽  
Vol 225 ◽  
pp. 399-406 ◽  
Author(s):  
Seona Kim ◽  
Chanseok Kim ◽  
Jun Hee Lee ◽  
Jeeyoung Shin ◽  
Tak-Hyoung Lim ◽  
...  

2005 ◽  
Vol 176 (25-28) ◽  
pp. 2167-2170 ◽  
Author(s):  
P SINGH ◽  
O PARKASH ◽  
D KUMAR

2017 ◽  
Vol 32 (S2) ◽  
pp. S38-S42
Author(s):  
Matthew R. Rowles ◽  
Cheng-Cheng Wang ◽  
Kongfa Chen ◽  
Na Li ◽  
Shuai He ◽  
...  

The crystal structure and thermal expansion of the perovskite samarium cobalt oxide (SmCoO3) have been determined over the temperature range 295–1245 K by Rietveld analysis of X-ray powder diffraction data. Polycrystalline samples were prepared by a sol–gel synthesis route followed by high-temperature calcination in air. SmCoO3 is orthorhombic (Pnma) at all temperatures and is isostructural with GdFeO3. The structure was refined as a distortion mode of a parent $ Pm{\bar 3}m $ structure. The thermal expansion was found to be non-linear and anisotropic, with maximum average linear thermal expansion coefficients of 34.0(3) × 10−6, 24.05(17) × 10−6, and 24.10(18) × 10−6 K−1 along the a-, b-, and c-axes, respectively, between 814 and 875 K.


2010 ◽  
Vol 25 (11) ◽  
pp. 2063-2071 ◽  
Author(s):  
Chanho Pak ◽  
Sangkyun Kang ◽  
Yeong Suk Choi ◽  
Hyuk Chang

Polymer electrolyte fuel cells (PEFCs) are drawing attention as energy conversion devices for next generations because of their highly efficient, environmentally benign, and portable features. In the last five decades, three distinguishable innovations were achieved in terms of proton conductive membranes and electrodes: introduction of perfluorinated membranes into PEFCs, adoption of ionomers for electrodes, and increased toughness of membranes by reinforced membranes. The efficiency, cost, and durability achieved from the past three innovations are still not enough to replace competing technologies such as combustion engines. In this review, the authors would elucidate the three different methods based on nanotechnology to overcome the limits: nanoporous carbon-supported catalysts, nanocomposite membranes, and nanostructured membrane electrode assemblies, which will bring the fourth innovation to PEFCs. With the innovation, PEFCs will fulfill the goals of being clean-energy conversion devices in the major applications of stationary, portable, and vehicle markets.


Sign in / Sign up

Export Citation Format

Share Document