Robust superhydrophobic TiO2@fabrics for UV shielding, self-cleaning and oil–water separation

2015 ◽  
Vol 3 (6) ◽  
pp. 2825-2832 ◽  
Author(s):  
J. Y. Huang ◽  
S. H. Li ◽  
M. Z. Ge ◽  
L. N. Wang ◽  
T. L. Xing ◽  
...  

Multifunctional robust TiO2@fabrics with special wettability demonstrated potential applications for excellent UV shielding, effective self-cleaning, efficient oil–water separation and microfluidic management.

2020 ◽  
Vol 12 (5) ◽  
pp. 676-684 ◽  
Author(s):  
Guo-Qiang Xi ◽  
Jun-Feng Li ◽  
Hui Deng ◽  
Ming-Guo Ma

Superhydrophobic surfaces have received enormous attention thanking to their potential applications in the areas of anti-icing, anti-contamination, and oil/water separation. Herein, we have successfully prepared superhydrophobic surfaces, which were synthesized by using the polydimethylsiloxane (PDMS) as adhesive and the magnesium palmitate (Mg-P) were evently coated to form roughness on the surfaces of glass, textile, stainless steel mesh, and paper. The as-fabricated superhydrophobic surfaces possessed excellent water-resistance, self-cleaning properties, durability, and robustness. Remarkably, in the actual oil/water separation, the water contact angle and oil collection efficiency of the superhydrophobic mesh were still more than 150° and 91% even after separation over 10 cycles, respectively. Thus, the superhydrophobic coating has applications potential in self-cleaning, anti-contamination, and oil/water separation fields.


2021 ◽  
Author(s):  
Wei xu ◽  
LiHui Xu ◽  
Hong Pan ◽  
Liming Wang ◽  
Yong Shen ◽  
...  

Abstract In this work, robust superhydrophobic cotton fabrics with UV shielding, self-cleaning, photocatalysis, and oil/water separation were successfully prepared based on micro/nano hierarchical ZnO/HNTs (halloysite nanotubes) hybrid particles and silicone elastomer polydimethylsiloxane (PDMS). ZnO/HNTs hybrid particles were prepared by in-situ growth of ZnO nanoparticles on the surface of halloysite nanotubes (HNTs). ZnO/HNTs hybrid particles and PDMS were used to successively coat cotton fabric by dip-coating approach. The coated cotton fabric displayed excellent superhydrophobicity with a water contact angle of 162.5 ± 1° and photocatalytic degradation of methylene blue solution under UV irradiation owing to the roughness and photocatalytic performance provided by micro/nano hierarchical ZnO/HNTs hybrid particles and low surface energy achieved by PDMS. The as-prepared fabric also displayed outstanding self-cleaning and antifouling properties. In addition, due to its both superhydrophobic and superoleophilic characteristics, the as-prepared cotton fabric can be used to separate several oil/water mixtures and showed good recoverability. The superhydrophobic cotton fabric also exhibited excellent UV shielding performance with a large UV protection factor of 1643.28 due to strong ultraviolet-absorption, light scattering and frequent light reflection of ZnO nanoparticles in ZnO/HNTs composites coated on cotton fabric. Importantly, the as-prepared fabric retained superhydrophobic performance after 2000 cycles rubbing, 90h UV illumination, and immersing in acidic and alkali solutions with different pH values ranging from 1 to 14 for 1 h. These characteristics make multifunctional cotton fabrics a satisfactory candidate in various promising fields.


Author(s):  
Yuandong Jia ◽  
Kecheng Guan ◽  
Pengfei Zhang ◽  
Qin Shen ◽  
Shengyao Wang ◽  
...  

Superwetting surfaces have several applications, such as self-cleaning, anti-fouling, anti-corrosion, water harvesting, and oil–water separation, owing to their distinct structure and properties. Hydrogel-based coatings are particularly attractive owing to their...


RSC Advances ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 4660-4671
Author(s):  
Yaofa Luo ◽  
Shuang Wang ◽  
Xihan Fu ◽  
Xiaosheng Du ◽  
Haibo Wang ◽  
...  

A durable superhydrophobic, self-cleaning cotton fabric based on UV curing was prepared and used in the field of oil/water separation.


Author(s):  
Yan Yan ◽  
Jiale Guo ◽  
Nuo Chen ◽  
Yuxin Song ◽  
Si Wu ◽  
...  

2017 ◽  
Vol 313 ◽  
pp. 398-403 ◽  
Author(s):  
Xin Du ◽  
Shijie You ◽  
Xiuheng Wang ◽  
Qiuru Wang ◽  
Jiandong Lu

Sign in / Sign up

Export Citation Format

Share Document