Enhancing the blue phosphorescence of iridium complexes with a dicyclometalated phosphite ligand via aza-substitution: a density functional theory investigation

2014 ◽  
Vol 2 (39) ◽  
pp. 8364-8372 ◽  
Author(s):  
Gahungu Godefroid ◽  
Liu Yuqi ◽  
Si Yanling ◽  
Su Juanjuan ◽  
Qu Xiaochun ◽  
...  

The influence of azasubstitution on electronic and photophysical properties of iridium complexes of blue phosphorescent dicyclometalated phosphite has been explored using quantum chemical methods.

2016 ◽  
Vol 52 (64) ◽  
pp. 9893-9896 ◽  
Author(s):  
Rebecca Sure ◽  
Stefan Grimme

By state-of-the-art dispersion corrected density functional theory, the complexation properties of a recently synthesized halogen-bonded capsule with about 400 atoms are investigated and predictions for improved binding affinities are made.


2021 ◽  
Vol 23 (1) ◽  
pp. 151-172
Author(s):  
Gabriela Drabik ◽  
Janusz Szklarzewicz ◽  
Mariusz Radoń

Benchmarking quantum-chemical methods against experiment-derived spin-state energetics of metallocenes.


2017 ◽  
Vol 19 (3) ◽  
pp. 395-404 ◽  
Author(s):  
Sangavi Pari ◽  
Inger A. Wang ◽  
Haizhou Liu ◽  
Bryan M. Wong

DFT and high-level quantum methods are utilized to explore sulfate radical-driven oxidation.


2021 ◽  
Author(s):  
Nikola Ristivojević ◽  
◽  
Dušan Dimić ◽  
Marko Đošić ◽  
Stefan Mišić ◽  
...  

Anabolic steroids are a group of commonly counterfeit substances used by individuals who want to gain weight and muscles. Testosterone propionate (TP), an ester analog of testosterone, belongs to this group and its spectroscopic analysis is important especially when it is improperly labeled and misused. In this contribution quantum chemical methods, at the B3LYP/6- 311++G(d,p) level of theory, were applied for the prediction of the vibrational (IR and Raman) and UV-VIS spectra of TP. The applicability of the chosen level of theory was proven based on the comparison between experimental and theoretical bond lengths and angles. The most prominent bands in the IR and Raman spectra were assigned and correlated with the calculated ones. The electronic spectra were also analyzed and the assignments were made based on the Time-Dependent Density Functional Theory (TD-DFT) calculations. The orbitals included in the most intense transitions were visualized and possible solvent effects were discussed. The presented results proved the applicability of the DFT methods for the prediction of spectra that could lead to the counterfeit substances determination.


Author(s):  
Florian Weigend ◽  
Reinhart Ahlrichs

This work focuses on finding and rationalizing the building principles of clusters with approximately 300 atoms of different types of metals: main group elements (Al, Sn), alkaline earth metals (Mg), transition metals (Pd) and clusters consisting of two different elements (Ir and Pt). Two tools are inevitable for this purpose: (i) quantum chemical methods that are able to treat a given cluster with both sufficient accuracy and efficiency and (ii) algorithms that are able to systematically scan the (3 n −6)-dimensional potential surface of an n -atomic cluster for promising isomers. Currently, the only quantum chemical method that can be applied to metal clusters is density functional theory (DFT). Other methods either do not account for the multi-reference character of metal clusters or are too expensive and thus can be applied only to clusters of very few atoms, which usually is not sufficient for studying the building principles. The accuracy of DFT is not known a priori , but extrapolations to bulk values from calculated series of data show satisfying agreement with experimental data. For scans of the potential surface, simulated annealing techniques or genetic algorithms were used for the smaller clusters (approx. 20–30 atoms), and for the larger clusters considerations were restricted to selected packings and shapes. For the mixed-metallic clusters, perturbation theory turned out to be efficient and successful for finding the most promising distributions of the two atom types at the different sites.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 232
Author(s):  
Anastasia Solomatina ◽  
Daria Kozina ◽  
Vitaly Porsev ◽  
Sergey Tunik

Herein we report four [Ir(N^C)2(L^L)]n+, n = 0,1 complexes (1–4) containing cyclometallated N^C ligand (N^CH = 1-phenyl-2-(4-(pyridin-2-yl)phenyl)-1H-phenanthro[9,10-d]imidazole) and various bidentate L^L ligands (picolinic acid (1), 2,2′-bipyridine (2), [2,2′-bipyridine]-4,4′-dicarboxylic acid (3), and sodium 4,4′,4″,4‴-(1,2-phenylenebis(phosphanetriyl))tetrabenzenesulfonate (4). The N^CH ligand precursor and iridium complexes 1–4 were synthesized in good yield and characterized using chemical analysis, ESI mass spectrometry, and NMR spectroscopy. The solid-state structure of 2 was also determined by XRD analysis. The complexes display moderate to strong phosphorescence in the 550–670 nm range with the quantum yields up to 30% and lifetimes of the excited state up to 60 µs in deoxygenated solution. Emission properties of 1–4 and N^CH are strongly pH-dependent to give considerable variations in excitation and emission profiles accompanied by changes in emission efficiency and dynamics of the excited state. Density functional theory (DFT) and time-dependent density functional theory (TD DFT) calculations made it possible to assign the nature of emissive excited states in both deprotonated and protonated forms of these molecules. The complexes 3 and 4 internalize into living CHO-K1 cells, localize in cytoplasmic vesicles, primarily in lysosomes and acidified endosomes, and demonstrate relatively low toxicity, showing more than 80% cells viability up to the concentration of 10 µM after 24 h incubation. Phosphorescence lifetime imaging microscopy (PLIM) experiments in these cells display lifetime distribution, the conversion of which into pH values using calibration curves gives the magnitudes of this parameter compatible with the physiologically relevant interval of the cell compartments pH.


Author(s):  
Huimin Guo ◽  
Xiaolin Ma ◽  
Zhiwen Lei ◽  
Yang Qiu ◽  
Bernhard Dick ◽  
...  

The electronic structure and photophysical properties of a series of N-Methyl and N-Acetyl substituted alloxazine (AZs) were investigated with extensive density functional theory (DFT) and time-dependent density functional theory (TD-DFT)...


2016 ◽  
Vol 39 (3-4) ◽  
Author(s):  
Sandeep Pokharia ◽  
Rachana Joshi ◽  
Mamta Pokharia ◽  
Swatantra Kumar Yadav ◽  
Hirdyesh Mishra

AbstractThe quantum-chemical calculations based on density functional theory (DFT) have been performed on the diphenyltin(IV) derivative of glycyl-phenylalanine (H


Sign in / Sign up

Export Citation Format

Share Document