Fabrication of a high-performance dye-sensitized solar cell with 12.8% conversion efficiency using organic silyl-anchor dyes

2015 ◽  
Vol 51 (29) ◽  
pp. 6315-6317 ◽  
Author(s):  
Kenji Kakiage ◽  
Yohei Aoyama ◽  
Toru Yano ◽  
Keiji Oya ◽  
Toru Kyomen ◽  
...  

A dye-sensitized solar cell co-photosensitized with metal-free organic silyl-anchor dyes exhibited a high light-to-electric energy conversion efficiency of 12.8% under one sun conditions.

2018 ◽  
Vol 273 ◽  
pp. 146-153 ◽  
Author(s):  
Nurnaeimah Jamalullail ◽  
Ili Salwani Mohamad ◽  
Mohd Natashah Norizan ◽  
Norsuria Mahmed

Dye sensitized solar cell (DSSC) is a well-known photovoltaic device that is used for low power application. One of the main components for DSSC is semiconductor material photoanode which will provide the pathway for electron transportation and thus determine the energy conversion efficiency of the DSSC. The most commonly used material for the semiconductor photoanode is titanium dioxide (TiO2).TiO2is a semiconductor material with wide bandgap material that is existed in three crystalline phase; rutile, anatase and brookite. This paper emphasizes the best annealing temperature for commercialized TiO2, 98% anatase powder where the temperature varies from 300 oC – 600 oC. Through this research, the best annealing temperature for anatase TiO2photoanode is at 420 °C (0.094%) with the crystallite size of 18.76 nm and particle size of 19 nm that is favorable for the dye attached and thus enhances the energy conversion efficiency of the DSSC.


Author(s):  
Jasim Uddin ◽  
Jahid M.M. Islam ◽  
Shauk M.M. Khan ◽  
Enamul Hoque ◽  
Mubarak A. Khan

Dye sensitized solar cell (DSSC) shows great promise as an alternative to conventional p-n junction solar cells due to their low fabrication cost and reasonably high efficiency. DSSC was assembled by using natural dye extracted from red amaranth (Amaranthus Gangeticus) as a sensitizer and different catalysts for counter electrode were applied for maximum energy conversion efficiency. Annealing temperature and thickness of electrode were also investigated and optimized. Catalyst, annealing temperature and thickness were optimized by the determination of cell performance considering photoelectrochemical output and measuring current and voltage; then calculating efficiency and other electrical parameters. The experimental results indicated that samples having 40 µm electrode thickness and prepared at 450 °C annealing temperature showed the best performance


2017 ◽  
Vol 6 (2) ◽  
pp. 151-161
Author(s):  
Arun Kumar Gupta ◽  
Ishwar Chandra Maurya ◽  
Neetu ◽  
Shalini Singh ◽  
Pankaj Srivastava ◽  
...  

2015 ◽  
Vol 51 (88) ◽  
pp. 15894-15897 ◽  
Author(s):  
Kenji Kakiage ◽  
Yohei Aoyama ◽  
Toru Yano ◽  
Keiji Oya ◽  
Jun-ichi Fujisawa ◽  
...  

A collaborative sensitization by silyl-anchor and carboxy-anchor dyes (ADEKA-1 + LEG4) in dye-sensitized solar cells realized a high light-to-electric energy conversion efficiency of over 14% under one sun illumination.


Sign in / Sign up

Export Citation Format

Share Document