scholarly journals Charge control of the inverse trans-influence

2015 ◽  
Vol 51 (93) ◽  
pp. 16671-16674 ◽  
Author(s):  
Henry S. La Pierre ◽  
Michael Rosenzweig ◽  
Boris Kosog ◽  
Christina Hauser ◽  
Frank W. Heinemann ◽  
...  

The relative charge localization on the multiply bonded ligand (O2− or TMSN2−) governs the ground state stabilization derived from the inverse trans-influence (ITI) in U(vi) complexes of the [((RArO)3tacn)UL]+ system with metal-ligand multiple bonding (MLMB).

2017 ◽  
Vol 31 (07) ◽  
pp. 1750071
Author(s):  
Z. D. Vatansever ◽  
S. Sakiroglu ◽  
I. Sokmen

In this paper, the effects of a repulsive scattering center on the ground-state energy and spin properties of a three-electron parabolic quantum dot are investigated theoretically by means of configuration interaction method. Phase transition from a weakly correlated regime to a strongly correlated regime is examined from several strengths and positions of Gaussian impurity. Numerical results reveal that the transition from spin-1/2 to spin-3/2 state depends strongly on the location of the impurity which accordingly states the controllability of the spin polarization. Moreover, broken circular symmetry results in more pronounced electronic charge localization.


1992 ◽  
Vol 11 (12) ◽  
pp. 4221-4225 ◽  
Author(s):  
David S. Glueck ◽  
Jennifer C. Green ◽  
Richard I. Michelman ◽  
Ian N. Wright

2010 ◽  
Vol 39 (5) ◽  
pp. 1145-1158 ◽  
Author(s):  
Trevor W. Hayton

2019 ◽  
Author(s):  
Natalie Rice ◽  
Ivan Popov ◽  
Dominic Russo ◽  
John Bacsa ◽  
Enrique Batista ◽  
...  

Synthetic strategies to yield molecular complexes of high-valent lanthanides, other than the ubiquitous Ce<sup>4+</sup> ion, are exceptionally rare, and thorough, detailed characterization in these systems is limited by complex lifetime and reaction and isolation conditions. The synthesis of high-symmetry complexes in high purity with significant lifetimes in solution and solid-state are essential for determining the role of ligand-field splitting, multiconfigurational behavior, and covalency in governing the reactivity and physical properties of these potentially technologically transformative tetravalent ions. We report the synthesis and physical characterization of an <i>S</i><sub>4</sub> symmetric, four-coordinate tetravalent terbium complex, [Tb(NP(1,2-bis-<i><sup>t</sup></i>Bu-diamidoethane)(NEt<sub>2</sub>))<sub>4</sub>] (where Et is ethyl and <i>t</i>Bu is <i>tert</i>-butyl). The ligand field in this complex is weak and the metal-ligand bonds sufficiently covalent so that the tetravalent terbium ion is stable and accessible via a mild oxidant from the anionic, trivalent, terbium precursor, [(Et<sub>2</sub>O)K][Tb(NP(1,2-bis-<i><sup>t</sup></i>Bu-diamidoethane)(NEt<sub>2</sub>))<sub>4</sub>]. The significant stability of the tetravalent complex enables its thorough characterization. The step-wise development of the supporting ligand points to key ligand control elements for further extending the known tetravalent lanthanide ions in molecular complexes. Magnetic susceptibility, electron paramagnetic resonance (EPR) spectroscopy, X-ray absorption near-edge spectroscopy (XAS), and density functional theory studies indicate a <i>4f<sup>7</sup></i> ground state for [Tb(NP(1,2-bis-<i><sup>t</sup></i>Bu-diamidoethane)(NEt<sub>2</sub>))<sub>4</sub>] with considerable zero-field splitting: demonstrating that magnetic, tetravalent lanthanide ions engage in covalent metal-ligand bonds. This result has significant implications for the use of tetravalent lanthanide ions in magnetic applications since the observed zero-field splitting is intermediate between that observed for the trivalent lanthanides and for the transition metals. The similarity of the multiconfigurational behavior in the ground state of [Tb(NP(1,2-bis-<i><sup>t</sup></i>Bu-diamidoethane)(NEt<sub>2</sub>))<sub>4</sub>] (measured by Tb L<sub>3</sub>-edge XAS) to that observed in TbO<sub>2</sub> implicates ligand control of multiconfigurational behavior as a key component of the stability of the complex.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Matthew Gregson ◽  
Erli Lu ◽  
David P. Mills ◽  
Floriana Tuna ◽  
Eric J. L. McInnes ◽  
...  

Abstract Across the periodic table the trans-influence operates, whereby tightly bonded ligands selectively lengthen mutually trans metal–ligand bonds. Conversely, in high oxidation state actinide complexes the inverse-trans-influence operates, where normally cis strongly donating ligands instead reside trans and actually reinforce each other. However, because the inverse-trans-influence is restricted to high-valent actinyls and a few uranium(V/VI) complexes, it has had limited scope in an area with few unifying rules. Here we report tetravalent cerium, uranium and thorium bis(carbene) complexes with trans C=M=C cores where experimental and theoretical data suggest the presence of an inverse-trans-influence. Studies of hypothetical praseodymium(IV) and terbium(IV) analogues suggest the inverse-trans-influence may extend to these ions but it also diminishes significantly as the 4f orbitals are populated. This work suggests that the inverse-trans-influence may occur beyond high oxidation state 5f metals and hence could encompass mid-range oxidation state actinides and lanthanides. Thus, the inverse-trans-influence might be a more general f-block principle.


2015 ◽  
Vol 54 (12) ◽  
pp. 5646-5659 ◽  
Author(s):  
Courtney M. Donahue ◽  
Samuel P. McCollom ◽  
Chelsie M. Forrest ◽  
Anastasia V. Blake ◽  
Brian J. Bellott ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document