A real-space stochastic density matrix approach for density functional electronic structure

2015 ◽  
Vol 17 (47) ◽  
pp. 31472-31479 ◽  
Author(s):  
Thomas L. Beck

A novel stochastic approach aimed at solving for the ground-state one-particle density matrix in density functional theory is developed.

2015 ◽  
Vol 754-755 ◽  
pp. 757-761
Author(s):  
Abdullah Chik ◽  
S. Saad ◽  
Cheow Keat Yeoh ◽  
R.M. Zaki ◽  
F. Che Pa

The electronic structure of the perovskite manganites AlMnO3cubic crystal was presented. The calculations were made within density functional theory and PBE exchange correlations energy approximation. It was found that the crystal exhibit covalent bonding between Mn and O with superexchange mechanism. At groundstate, AlMnO3stabilizes in antiferromagnetic structure with semi metallic like nature at the ground state.


2006 ◽  
Author(s):  
Dan Negrut ◽  
Mihai Anitescu ◽  
Anter El-Azab ◽  
Steve Benson ◽  
Emil Constantinescu ◽  
...  

The goal of this work is the development of a highly parallel approach to computing the electron density in nanostructures. In the context of orbital-free density functional theory, a model reduction approach leads to a parallel algorithm that mirrors the subdomain partitioning of the problem. The resulting form of the energy functional that is subject to the minimization process is compact and simple. Computation of gradient and hessian information is immediate. The salient attribute of the proposed methodology is the use of model reduction (reconstruction) within the framework of electronic structure computation.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
L. Mikaeilzadeh ◽  
A. Tavana ◽  
F. Khoeini

AbstractIn this works, we study the electronic structure and magnetic properties of the Pr-Ni-Bi half-Heusler systems based on density functional theory. We use the σ GGA + U scheme to consider the effects of on-site electron-electron interactions. Results show that in contrast to the rough estimation of the total magnetic moment of the unit cell, based on the Slater-Pauling behavior in the half-Heusler systems, this system has an antiferromagnetic ground state because of the localized Pr-f electrons. By increasing the magnitude of the effective U parameter, band-inversion occurs in the band structure of this system, which shows the possibility of topological state occurrence.


Computation ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 66 ◽  
Author(s):  
T. S. Müller ◽  
W. Töws ◽  
G. M. Pastor

Recent developments in the density-functional theory of electron correlations in many-body lattice models are reviewed. The theoretical framework of lattice density-functional theory (LDFT) is briefly recalled, giving emphasis to its universality and to the central role played by the single-particle density-matrix γ . The Hubbard model and the Anderson single-impurity model are considered as relevant explicit problems for the applications. Real-space and reciprocal-space approximations to the fundamental interaction-energy functional W [ γ ] are introduced, in the framework of which the most important ground-state properties are derived. The predictions of LDFT are contrasted with available exact analytical results and state-of-the-art numerical calculations. Thus, the goals and limitations of the method are discussed.


2008 ◽  
Vol 22 (14) ◽  
pp. 2225-2239
Author(s):  
TAMÁS GÁL

Following a recent work [Gál, Phys. Rev. A64, 062503 (2001)], a simple derivation of the density-functional correction of the Hartree–Fock equations, the Hartree–Fock–Kohn–Sham equations, is presented, completing an integrated view of quantum mechanical theories, in which the Kohn–Sham equations, the Hartree–Fock–Kohn–Sham equations and the ground-state Schrödinger equation formally stem from a common ground: density-functional theory, through its Euler equation for the ground-state density. Along similar lines, the Kohn–Sham formulation of the Hartree–Fock approach is also considered. Further, it is pointed out that the exchange energy of density-functional theory built from the Kohn–Sham orbitals can be given by degree-two homogeneous N-particle density functionals (N = 1, 2, …), forming a sequence of degree-two homogeneous exchange-energy density functionals, the first element of which is minus the classical Coulomb-repulsion energy functional.


2010 ◽  
Vol 229 (6) ◽  
pp. 2339-2363 ◽  
Author(s):  
Jun-Ichi Iwata ◽  
Daisuke Takahashi ◽  
Atsushi Oshiyama ◽  
Taisuke Boku ◽  
Kenji Shiraishi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document