scholarly journals Transition state geometry prediction using molecular group contributions

2015 ◽  
Vol 17 (48) ◽  
pp. 32173-32182 ◽  
Author(s):  
Pierre L. Bhoorasingh ◽  
Richard H. West

Geometries of reaction transition states can be predicted accurately using group-contribution scheme with data arranged in a hierarchical tree database.

2020 ◽  
Author(s):  
Nathan Harms ◽  
Carl Underkoffler ◽  
Richard West

<div>Kinetic modeling of combustion chemistry has made substantial progress in recent years with the development of increasingly detailed models. However, many of the chemical kinetic parameters utilized in detailed models are estimated, often inaccurately. To help replace rate estimates with more accurate calculations, we have developed AutoTST, an automated Transition State Theory rate calculator. This work describes improvements to AutoTST, including: a systematic conformer search to find an ensemble of low energy conformers, vibrational analysis to validate transition state geometries, more accurate symmetry number calculations, and a hindered rotor treatment when deriving kinetics. These improvements resulted in location of transition state geometry for 93% of cases and generation of kinetic parameters for 74% of cases. Newly calculated parameters agree well with benchmark calculations and perform well when used to replace estimated parameters in a detailed kinetic model of methanol combustion.</div>


1994 ◽  
Vol 47 (8) ◽  
pp. 1523 ◽  
Author(s):  
MR Haque ◽  
M Rasmussen

The N1/N3-alkylation patterns of 4-amino-, 4-methyl- and 4-nitro-benzimidazole anions, and their 2-methyl analogues, with a standard set of primary alkyl halides (in dimethylformamide, 30°) have been determined and compared. The observed regioselectivities are dominated by proximal effects-electrostatic field, non-bonded steric and in some cases specific association (hydrogen bonding)-the interplay of which is critically dependent on the (variable) geometries of the SN2 transition states involved, in particular on the N---C distance of the developing N-alkyl bonds. The presence of a symmetrically placed 2-methyl group produces an enhanced N1/N3 site selectivity, very sensitive to the loose-tight nature of the transition state. Halide leaving group effects on butylation regioselectivities of 2-unsubstituted, 2-ethoxy-, 2-methyl- and 2-chloro-4-methylbenzimidazole anions, whilst small, are consistent with a Bell-Evans-Polanyi analysis of SN2 transition state variations, with the earlier transition states of CH3(CH2)3I leading to reduced regioselectivities.


1976 ◽  
Vol 54 (5) ◽  
pp. 678-684 ◽  
Author(s):  
Sujit Banerjee ◽  
Nick Henry Werstiuk

Rate data for the acetolysis of exo-norbornyl-sulfonates have been correlated with those for the corresponding endo isomers. It is shown that the slopes of the log kexovs. log kendo plots reflect the difference in delocalization between the transition states derived from the exo and endo isomers, respectively. The log kexovs. log kendo plot, which is comprised of the parent norbornyl sufonate and its derivatives substituted at the 5, 6, and 7 positions, has a slope of 1.11 ± 0.08, which establishes that σ bridging is absent in the transition state obtained from the exo isomer. A similar analysis of base-catalyzed hydrogen–deuterium exchange rates of norbornanones reveals that exo proton exchange is more sensitive to substituent effects than the corresponding endo process.


Sign in / Sign up

Export Citation Format

Share Document