A Bi-doped Li3V2(PO4)3/C cathode material with an enhanced high-rate capacity and long cycle stability for lithium ion batteries

2015 ◽  
Vol 44 (40) ◽  
pp. 17579-17586 ◽  
Author(s):  
Yi Cheng ◽  
Kai Feng ◽  
Wei Zhou ◽  
Hongzhang Zhang ◽  
Xianfeng Li ◽  
...  

A promising cathode material Li3V1.97Bi0.03(PO4)3/C for high-power Li rechargeable batteries shows excellent electrochemical performance.

2014 ◽  
Vol 2 (43) ◽  
pp. 18613-18623 ◽  
Author(s):  
Qingrui. Xue ◽  
Jianling. Li ◽  
Guofeng. Xu ◽  
Hongwei. Zhou ◽  
Xindong. Wang ◽  
...  

Compound modification by polyaniline coating and acid treatment is an ideal way to improve the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2.


RSC Advances ◽  
2018 ◽  
Vol 8 (51) ◽  
pp. 28978-28986 ◽  
Author(s):  
Yifang Wu ◽  
Shaokun Chong ◽  
Yongning Liu ◽  
ShengWu Guo ◽  
Pengwei Wang ◽  
...  

C18BF15 was first adopted as a boron source and has demonstrated its clear modification effects, as shown by the high rate capability.


2021 ◽  
Author(s):  
Dongjian Li ◽  
Hongtao Guo ◽  
Shaohua Jiang ◽  
Guilin Zeng ◽  
Wei Zhou ◽  
...  

Mg–Zr-Ti co-modified NCM with excellent electrochemical performance is obtained by a solid-state method.


RSC Advances ◽  
2015 ◽  
Vol 5 (61) ◽  
pp. 49765-49770 ◽  
Author(s):  
Lihua Chu ◽  
Meicheng Li ◽  
Xiaodan Li ◽  
Yu Wang ◽  
Zipei Wan ◽  
...  

3D NiO microspheres assembled from porous nanosheets were fabricated, showing an excellent electrochemical performance in a lithium ion battery (reversible discharge capacity: up to 820 mA h g−1 after 100 cycles at 100 mA g−1; rate capacity: 634 mA h g−1 at 1 A g−1).


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1766
Author(s):  
Meijie Zhu ◽  
Jiangang Li ◽  
Zhibei Liu ◽  
Li Wang ◽  
Yuqiong Kang ◽  
...  

The cathode material LiNi2/3Co1/6Mn1/6O2 with excellent electrochemical performance was prepared successfully by a rheological phase method. The materials obtained were characterized by X-ray diffraction, scanning electron microscopy, electrochemical impedance spectroscopy and charge-discharge tests. The results showed that both calcination temperatures and atmosphere are very important factors affecting the structure and electrochemical performance of LiNi2/3Co1/6Mn1/6O2 material. The sample calcinated at 800 °C under O2 atmosphere displayed well-crystallized particle morphology, a highly ordered layered structure with low defects, and excellent electrochemical performance. In the voltage range of 2.8–4.3 V, it delivered capacity of 188.9 mAh g−1 at 0.2 C and 130.4 mAh g−1 at 5 C, respectively. The capacity retention also reached 93.9% after 50 cycles at 0.5 C. All the results suggest that LiNi2/3Co1/6Mn1/6O2 is a promising cathode material for lithium-ion batteries.


Sign in / Sign up

Export Citation Format

Share Document