Novel PA-doped polybenzimidazole membranes with high doping level, high proton conductivity and high stability for HT-PEMFCs

RSC Advances ◽  
2015 ◽  
Vol 5 (66) ◽  
pp. 53870-53873 ◽  
Author(s):  
Xiaobai Li ◽  
Hongwei Ma ◽  
Hailong Wang ◽  
Shitong Zhang ◽  
Zhenhua Jiang ◽  
...  

This work outlines polybenzimidazole-based high temperature proton exchange membranes with a high phosphoric acid-doping level, high proton conductivity and high stability.

Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3425 ◽  
Author(s):  
Zhai ◽  
Li

As one of the most efficient pathways to provide clean energy, fuel cells have attracted great attention in both academic and industrial communities. Proton exchange membranes (PEMs) or proton-conducting electrolytes are the key components in fuel cell devices, which require the characteristics of high proton conductivity as well as high mechanical, chemical and thermal stabilities. Organic–inorganic hybrid PEMs can provide a fantastic platform to combine both advantages of two components to meet these demands. Due to their extremely high proton conductivity, good thermal stability and chemical adjustability, polyoxometalates (POMs) are regarded as promising building blocks for hybrid PEMs. In this review, we summarize a number of research works on the progress of POM–polymer hybrid materials and related applications in PEMs. Firstly, a brief background of POMs and their proton-conducting properties are introduced; then, the hybridization strategies of POMs with polymer moieties are discussed from the aspects of both noncovalent and covalent concepts; and finally, we focus on the performance of these hybrid materials in PEMs, especially the advances in the last five years. This review will provide a better understanding of the challenges and perspectives of POM–polymer hybrid PEMs for future fuel cell applications.


RSC Advances ◽  
2015 ◽  
Vol 5 (130) ◽  
pp. 107982-107991 ◽  
Author(s):  
Bo Dong ◽  
Yan Wang ◽  
Jinhui Pang ◽  
Shaowei Guan ◽  
Zhenhua Jiang

A polyelectrolyte membrane based on sulfonated methoxyphenyl-containing poly(arylene ether ketone) (SMP-PAEK) was obtained, which exhibited suitable proton conductivities and excellent mechanical properties.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 135
Author(s):  
Zhengping Zhou ◽  
Oksana Zholobko ◽  
Xiang-Fa Wu ◽  
Ted Aulich ◽  
Jivan Thakare ◽  
...  

Polymer electrolyte membrane fuel cells (PEMFCs) expect a promising future in addressing the major problems associated with production and consumption of renewable energies and meeting the future societal and environmental needs. Design and fabrication of new proton exchange membranes (PEMs) with high proton conductivity and durability is crucial to overcome the drawbacks of the present PEMs. Acid-doped polybenzimidazoles (PBIs) carry high proton conductivity and long-term thermal, chemical, and structural stabilities are recognized as the suited polymeric materials for next-generation PEMs of high-temperature fuel cells in place of Nafion® membranes. This paper aims to review the recent developments in acid-doped PBI-based PEMs for use in PEMFCs. The structures and proton conductivity of a variety of acid-doped PBI-based PEMs are discussed. More recent development in PBI-based electrospun nanofiber PEMs is also considered. The electrochemical performance of PBI-based PEMs in PEMFCs and new trends in the optimization of acid-doped PBIs are explored.


Author(s):  
Hsiu-Li Lin ◽  
Chih-Ren Hu ◽  
Po-Hao Su ◽  
Yu-Cheng Chou ◽  
Che-Yu Lin

Phosphoric acid doped poly(benzimidazole) (PBI) is one of excellent candidates of proton exchange membranes for high temperature (150–180°C) proton exchange membrane fuel cells (PEMFCs). However, the strong inter-polymer hydrogen bonds cause low elongation and brittleness of PBI membranes. In this work, we synthesize poly(benzimidazole) (PBI) and butylsulfonated poly(benzimidazole) (PBI-BS), in which around 22 mole% of imidazole –NH groups of PBI are grafted with sulfonated butyl groups. We show the elongation, phosphoric acid doping level, and proton conductivity of PBI can be improved by blending ∼ 20 wt% of PBI-BS in the PBI membrane, and the membrane electrode assembly prepared from PBI/PBI-BS (8/2 by wt) blend membrane has a better PEMFC performance at 140°C ∼ 180°C than that prepared from PBI membrane. It is believed that the crosslink interactions of imidazole -NH and -N=C-groups with side chain –C4H8−SO3H groups of PBI-BS reduces the inter-PBI hydrogen bonds and increases the free volume of polymers, which leads to the enhancements of the membrane toughness and phosphoric acid doping level and the PEMFC performance.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 515 ◽  
Author(s):  
Chunmei Gao ◽  
Meishao Hu ◽  
Li Wang ◽  
Lei Wang

Highly phosphoric-acid (PA)-doped polybenzimidazole (PBI) membranes exhibit good proton conductivity at high temperatures; however, they suffer from reduced mechanical properties and loss of PA molecules due to the plasticity of PA and the weak interactions between PA and benzimidazoles, especially with the absorption of water. In this work, a series of PBIs with hyperbranched cross-linkers decorated with imidazolium groups (ImOPBI-x, where x is the weight ratio of the hyperbranched cross-linker) as high-temperature proton exchange membranes are designed and synthesized for the first time. We observe how the hyperbranched cross-linkers can endow the membranes with improved oxidative stability and acceptable mechanical performance, and imidazolium groups with strong basicity can stabilize the PA molecules by delocalization and hydrogen bond formation to endow the membranes with an enhanced proton conductivity and a decreased loss of PA molecules. We measured a high proton conductivity of the ImOPBI-x membranes, ranging from 0.058 to 0.089 S cm−1 at 160 °C. In addition, all the ImOPBI-x membranes displayed good mechanical and oxidative properties. At 160 °C, a fuel cell based on the ImOPBI-5 membrane showed a power density of 638 mW cm−2 and good durability under a hydrogen/oxygen atmosphere, indicating its promising use in anhydrous proton exchange membrane applications.


2014 ◽  
Vol 5 (17) ◽  
pp. 4939-4947 ◽  
Author(s):  
Na Zhang ◽  
Chengji Zhao ◽  
Wenjia Ma ◽  
Shuang Wang ◽  
Baolong Wang ◽  
...  

The phosphoric acid doped quaternary ammonium poly(ether ether ketone) membranes cross-linked with PBI showed improved performance.


Sign in / Sign up

Export Citation Format

Share Document