doping level
Recently Published Documents


TOTAL DOCUMENTS

679
(FIVE YEARS 120)

H-INDEX

38
(FIVE YEARS 8)

APL Photonics ◽  
2022 ◽  
Author(s):  
Min Gyu Kwon ◽  
Cihyun Kim ◽  
Kyoung Eun Chang ◽  
Tae Jin Yoo ◽  
So-Young Kim ◽  
...  

Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 70
Author(s):  
Dongxu Li ◽  
Yanju Li ◽  
Zheshu Ma ◽  
Meng Zheng ◽  
Zhanghao Lu

Performance of a high-temperature proton exchange membrane fuel cell (HT-PEMFC) and the influence of different parameters on HT-PEMFC is analyzed in this study. Firstly, mathematical expression for energy efficiency, power density, exergy destruction and exergetic performance coefficient (EPC) are derived. Then, the relationship between the dimensionless power density, exergy destruction rate, exergetic performance coefficient (EPC) and energy efficiency is compared. Furthermore, the effect of flow rate, doping level, inlet pressure and film thickness are considered to evaluate the performance of HT-PEMFC. Results show that EPC not only considers exergetic loss rate to minimize exergetic loss, but also considers the power density of HT-PEMFC to maximize its power density and improve its efficiency, so EPC represents a better performance criterion. In addition, increasing inlet pressure and doping level can improve EPC and energy efficiency, respectively.


Author(s):  
E.А. Смирнова ◽  
И.А. Чепурная

For the first time, polymeric forms of the complexes N,N′-bis(salicylidene)ethylenediaminonickel(II) and N,N′-bis(3-methoxysalicylidene)ethylenediaminonickel(II) have been investigated as functional materials for the conducting channels of organic electrochemical transistors. The dependence of the electrical conductivity of the polymers on the electrolyte anion-doping level has been established. The polymer film conductivity versus gate voltage curve parameters have been shown to depend on the molecular structure of the complex and the nature of the electrolyte solvent.


Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 8
Author(s):  
Ta-Shun Chou ◽  
Saud Bin Anooz ◽  
Raimund Grüneberg ◽  
Klaus Irmscher ◽  
Natasha Dropka ◽  
...  

In this work, we train a hybrid deep-learning model (fDNN, Forest Deep Neural Network) to predict the doping level measured from the Hall Effect measurement at room temperature and to investigate the doping behavior of Si dopant in both (100) and (010) β-Ga2O3 thin film grown by the metalorganic vapor phase epitaxy (MOVPE). The model reveals that a hidden parameter, the Si supplied per nm (mol/nm), has a dominant influence on the doping process compared with other process parameters. An empirical relation is concluded from this model to estimate the doping level of the grown film with the Si supplied per nm (mol/nm) as the primary variable for both (100) and (010) β-Ga2O3 thin film. The outcome of the work indicates the similarity between the doping behavior of (100) and (010) β-Ga2O3 thin film via MOVPE and the generality of the results to different deposition systems.


2021 ◽  
Author(s):  
Mengjuan Mi ◽  
Xingwen Zheng ◽  
Shilei Wang ◽  
Yang Zhou ◽  
Lixuan Yu ◽  
...  

How to electrically control magnetic properties of a magnetic material is promising towards spintronic applications, where the investigation of carrier doping effects on antiferromagnetic (AFM) materials remains challenging due to their zero net magnetization. In this work, we found electron doping dependent variation of magnetic orders of a two-dimensional (2D) AFM insulator NiPS3, where doping concentration is tuned by intercalating various organic cations into the van der Waals gaps of NiPS3 without introduction of defects and impurity phases. The doped NiPS3 shows an AFM-ferrimagnetic (FIM) transition at doping level of 0.2-0.5 electrons/cell and a FIM-AFM transition at doping level of ≥0.6 electrons/cell. We propose that the found phenomenon is due to competition between Stoner exchange dominated inter-chain ferromagnetic order and super-exchange dominated inter-chain AFM order at different doping level. Our studies provide a viable way to exploit correlation between electronic structures and magnetic properties of 2D magnetic materials for realization of magnetoelectric effect.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. M. Shikin ◽  
A. A. Rybkina ◽  
D. A. Estyunin ◽  
I. I. Klimovskikh ◽  
A. G. Rybkin ◽  
...  

AbstractPolar Rashba-type semiconductor BiTeI doped with magnetic elements constitutes one of the most promising platforms for the future development of spintronics and quantum computing thanks to the combination of strong spin-orbit coupling and internal ferromagnetic ordering. The latter originates from magnetic impurities and is able to open an energy gap at the Kramers point (KP gap) of the Rashba bands. In the current work using angle-resolved photoemission spectroscopy (ARPES) we show that the KP gap depends non-monotonically on the doping level in case of V-doped BiTeI. We observe that the gap increases with V concentration until it reaches 3% and then starts to mitigate. Moreover, we find that the saturation magnetisation of samples under applied magnetic field studied by superconducting quantum interference device (SQUID) magnetometer has a similar behaviour with the doping level. Theoretical analysis shows that the non-monotonic behavior can be explained by the increase of antiferromagnetic coupled atoms of magnetic impurity above a certain doping level. This leads to the reduction of the total magnetic moment in the domains and thus to the mitigation of the KP gap as observed in the experiment. These findings provide further insight in the creation of internal magnetic ordering and consequent KP gap opening in magnetically-doped Rashba-type semiconductors.


2021 ◽  
Vol 88 (6) ◽  
pp. 887-894
Author(s):  
A. I. Mukhammad ◽  
P. I. Gaiduk

The absorption spectra of Si/SiO2/Si3N4/Si+ and Si/SiO2/Si+ structures with an island surface layer are calculated using the finite difference time domain method. The absorption spectra were modeled depending on the thickness of the substrate and its doping level. It was found that the thickness of the i-Si substrate does not affect the overall absorption of the structure. At the same time, an increase in the thickness of the n-Si substrate leads to an expansion of the absorption band with an intensity of more than 70%. It is established that the doping level of the substrate affects the absorption value of the structures and bandwidth with an absorption value above 80%. It is shown that a wide absorption band with intensity of more than 80% occurs at the doping level of the substrate in the range of 2 . 1019—5 . 1019 cm–3. Dispersion relations in the Si+/SiO2/Si+ structure with an unstructured surface layer are obtained. These dispersion relations may indicate the existence of plasmon oscillations in the system. It is established that a violation of the phase synchronization of the modes at both Si/dielectric interfaces at a significant difference between the doping levels of the substrate and the surface layer can lead to a decrease in the absorption.


Sign in / Sign up

Export Citation Format

Share Document