In situ nano-fibrillation of microinjection molded poly(lactic acid)/poly(ε-caprolactone) blends and comparison with conventional injection molding

RSC Advances ◽  
2015 ◽  
Vol 5 (113) ◽  
pp. 92905-92917 ◽  
Author(s):  
Weiwei Ding ◽  
Yinghong Chen ◽  
Zhuo Liu ◽  
Sen Yang

During microinjection molding, there are highly oriented PCL nanofibrils in situ formed, while during conventional injection molding, there are oriented microfibrils in situ formed.

2021 ◽  
pp. 51413
Author(s):  
Rong Yang ◽  
Hongwei Cao ◽  
Chong Li ◽  
Guoxiang Zou ◽  
Xin Zhang ◽  
...  

2012 ◽  
Vol 13 (11) ◽  
pp. 3858-3867 ◽  
Author(s):  
Hu Tang ◽  
Jing-Bin Chen ◽  
Yan Wang ◽  
Jia-Zhuang Xu ◽  
Benjamin S. Hsiao ◽  
...  

2020 ◽  
Vol 60 (7) ◽  
pp. 1676-1685
Author(s):  
Jing Sun ◽  
Shanshan Luo ◽  
Anrong Huang ◽  
Min Shi ◽  
Heng Luo ◽  
...  

Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2422 ◽  
Author(s):  
Zhiwen Zhu ◽  
Hezhi He ◽  
Bin Xue ◽  
Zhiming Zhan ◽  
Guozhen Wang ◽  
...  

In this study, biodegradable poly(butylene succinate)/poly(lactic acid) (PBS/PLA) in-situ submicrofibrillar composites with various PLA content were successfully produced by a triple-screw extruder followed by a hot stretching−cold drawing−compression molding process. This study aimed to investigate the effects of dispersed PLA submicro-fibrils on the thermal, mechanical and rheological properties of PBS/PLA composites. Morphological observations demonstrated that the PLA phases are fibrillated to submicro-fibrils in the PBS/PLA composites, and all the PLA submicro-fibrils produced seem to have a uniform diameter of about 200nm. As rheological measurements revealed, at low frequencies, the storage modulus (G’) of PBS/PLA composites has been increased by more than four orders of magnitude with the inclusion of high concentrations (15 wt % and 20 wt %) of PLA submicro-fibrils, which indicates a significant improvement in the elastic responses of PBS melt. Dynamic Mechanical Analysis (DMA) results showed that the glass transition temperature (Tg) of PBS phase slightly shifted to the higher temperature after the inclusion of PLA. DSC experiments proved that fiber morphology of PLA has obvious heterogeneous nucleation effect on the crystallization of PBS. The tensile properties of the PBS/PLA in-situ submicrofibrillar composites are also improved compared to neat PBS.


2020 ◽  
Vol 7-8 ◽  
pp. 100027 ◽  
Author(s):  
E.O. Cisneros-López ◽  
A.K. Pal ◽  
A.U. Rodriguez ◽  
F. Wu ◽  
M. Misra ◽  
...  

2019 ◽  
Vol 39 (10) ◽  
pp. 944-953
Author(s):  
Jitlada Boonlertsamut ◽  
Suchalinee Mathurosemontri ◽  
Supaphorn Thumsorn ◽  
Toshikazu Umemura ◽  
Atsushi Sakuma

Abstract In this research, different strategies to modify the structure of polymer blends were investigated with the objective of adjusting the composition of polyoxymethylene (POM) and poly(lactic acid) (PLA) under typical processing conditions. POM shows a good balance of mechanical and thermal properties. However, this polymer is obtained from petrochemical sources, and in some markets, environmentally friendly materials are important. Blending POM with PLA preserves the advantages of POM while ensuring the bio-based content of PLA. POM/PLA blends were prepared by an injection molding process with various injection speeds of 10, 50, 100, and 1000 mm/s to ensure high ductility. Mechanical property analysis showed that the PLA content and processing temperatures are highly effective in modifying the stiffness of POM/PLA blends. The effect of crystallization on POM/PLA blends was assessed by varying the annealing time. High-magnification scanning electron microscopy images revealed that the gaps between fibrillar regions represent the growth direction of the PLA phase before it was removed. This was evidence for the effect of PLA on the crystallization of POM. The crystal size and crystalline volume also affected the structural characteristics of POM/PLA blends.


Sign in / Sign up

Export Citation Format

Share Document