Controllable synthesis of phosphate-modified BiPO4 nanorods with high photocatalytic activity: surface hydroxyl groups concentrations effects

RSC Advances ◽  
2015 ◽  
Vol 5 (121) ◽  
pp. 99712-99721 ◽  
Author(s):  
Yan Li ◽  
Yawen Wang ◽  
Yu Huang ◽  
Junji Cao ◽  
Wingkei Ho ◽  
...  

Surface modification by phosphate efficiently improves the photocatalytic performance of BiPO4 for the degradation of methylene orange (MO), by enhancing the concentration of surface hydroxyl groups and improving its hydrophilicity.

2012 ◽  
Vol 19 ◽  
pp. 96-99 ◽  
Author(s):  
Jingjing Wang ◽  
Xiaonao Liu ◽  
Renhong Li ◽  
Peisheng Qiao ◽  
Liping Xiao ◽  
...  

2015 ◽  
Vol 444 ◽  
pp. 42-48 ◽  
Author(s):  
Wenjuan Li ◽  
Dandan Du ◽  
Tingjiang Yan ◽  
Desheng Kong ◽  
Jinmao You ◽  
...  

1986 ◽  
Vol 51 (7) ◽  
pp. 1430-1438 ◽  
Author(s):  
Alena Reissová ◽  
Zdeněk Bastl ◽  
Martin Čapka

The title complexes have been obtained by functionalization of silica with cyclopentadienylsilanes of the type Rx(CH3)3 - xSi(CH2)nC5H5 (x = 1-3, n = 0, 1, 3), trimethylsilylation of free surface hydroxyl groups, transformation of the bonded cyclopentadienyl group to the cyclopentadienyl anion, followed by coordination of (h5-cyclopentadienyl)trichlorotitanium. The effects of single steps of the above immobilization on texture of the support, the number of free hydroxyl groups, the coverage of the surface by cyclopentadienyl groups and the degree of their utilization in anchoring the titanium complex have been investigated. ESCA study has shown that the above anchoring leads to formation of the silica-supported bis(h5-cyclopentadienyl)dichlorotitanium(IV) complex.


2011 ◽  
Vol 194-196 ◽  
pp. 385-388
Author(s):  
Hong Juan Wang ◽  
Feng Qiang Sun ◽  
Ming Zhong Ren ◽  
Qing Wei Guo

Nanoporous SnO2with high photocatalytic activity has been successfully prepared by a photochemical method, using SnCl2aqueous solution as a precursor. The as-synthesized sample was characterized by XRD, N2 adsorption-desorption and UV-vis. The photocatalytic activity of the sample was evaluated by degrading methylene blue (MB) aqueous solution under the UV light source and was compared with that of the commercial titania (Degussa P25). The results showed that the produced SnO2can degrade MB solution quickly and has comparative photocatalytic performance with P25 for degrading MB. This facile method supplies an effective way to prepare SnO2photocatalyst.


Sign in / Sign up

Export Citation Format

Share Document