Improving the flame retardancy and mechanical properties of poly(lactic acid) with a novel nanorod-shaped hybrid flame retardant

RSC Advances ◽  
2016 ◽  
Vol 6 (18) ◽  
pp. 14852-14858 ◽  
Author(s):  
Yu Cao ◽  
Yaqing Ju ◽  
Fenghui Liao ◽  
Xiaoxun Jin ◽  
Xiu Dai ◽  
...  

A novel nanorod-shaped hybrid flame retardant (NRH-FR) was synthesized by the reaction of benzenephosphinic acid with powdery aluminium hydroxide and the PLA/NRH-FR nanocomposites with good flame retardancy and mechanical property were prepared.

RSC Advances ◽  
2018 ◽  
Vol 8 (73) ◽  
pp. 42189-42199 ◽  
Author(s):  
Pengcheng Zhao ◽  
Zhiqi Liu ◽  
Xueyi Wang ◽  
Ye-Tang Pan ◽  
Ines Kuehnert ◽  
...  

A bio-based PLA composite with excellent fire performance, improved toughness and good processability.


2013 ◽  
Vol 98 (7) ◽  
pp. 1389-1396 ◽  
Author(s):  
Hai-Juan Lin ◽  
San-Rong Liu ◽  
Li-Jing Han ◽  
Xue-Mei Wang ◽  
Yi-Jie Bian ◽  
...  

2012 ◽  
Vol 24 (8) ◽  
pp. 738-746 ◽  
Author(s):  
Rui Zhang ◽  
Xifu Xiao ◽  
Qilong Tai ◽  
Hua Huang ◽  
Jian Yang ◽  
...  

Lignin–silica hybrids (LSHs) were prepared by sol–gel method and characterized by Fourier transform infrared (FT-IR) spectra, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). LSH and ammonium polyphosphate (APP) were added into poly(lactic acid) (PLA) as a novel intumescent flame-retardant (IFR) system to improve the flame retardancy of PLA. The flame-retardant effect of APP and LSH in PLA was studied using limiting oxygen index (LOI), vertical burning (UL-94) tests and cone calorimeter. The thermal stability of PLA/APP/LSH composites was evaluated by thermogravimetric analysis (TGA). Additionally, the morphology and components of char residues of the IFR-PLA composites were investigated by SEM and XPS. With the addition of APP/LSH to PLA system, the morphology of the char residue has obviously changed. Compared with PLA/APP and PLA/APP/lignin, a continuous and dense intumescent charring layer with more phosphor in PLA composites is formed, which exhibits better flame retardancy. All the results show that the combination of APP and LSH can improve the flame-retardant property and increase the thermal stability of PLA composites greatly.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2407
Author(s):  
Mingjun Niu ◽  
Zhongzhou Zhang ◽  
Zizhen Wei ◽  
Wanjie Wang

Poly(lactic) acid (PLA) is one of the most promising biobased materials, but its inherent flammability limits its applications. A novel flame retardant hexa-(DOPO-hydroxymethylphenoxy-dihydroxybiphenyl)-cyclotriphosphazene (HABP-DOPO) for PLA was prepared by bonding 9,10-dihydro-9-oxy-10-phosphaphenanthrene-10-oxide (DOPO) to cyclotriphosphazene. The morphologies, mechanical properties, thermal stability and burning behaviors of PLA/HABP-DOPO blends were investigated using a scanning electron microscope (SEM), a universal mechanical testing machine, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), limiting oxygen index (LOI), vertical burning (UL-94) and a cone calorimeter test (CCT). The LOI value reached 28.5% and UL-94 could pass V-0 for the PLA blend containing 25 wt% HABP-DOPO. A significant improvement in fire retardant performance was observed for PLA/HABP-DOPO blends. PLA/HABP-DOPO blends exhibited balanced mechanical properties. The flame retardant mechanism of PLA/HABP-DOPO blends was evaluated.


Sign in / Sign up

Export Citation Format

Share Document